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For a set-valued mapping, the relationships between lower semicontinuity,
almost lower semicontinuity, and the existence of various kinds of continuous selec-
tions for the mapping are explored. For the spaces Cy(7) and L,, intrinsic charac-
terizations are given of the one-dimensional subspaces whose metric projections
admit continuous selections.  © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X be a paracompact space, Y a normed linear space, 2* the collec-
tion of all nonempty subsets of Y, and 4(Y) the collection of all nonempty,
closed, and convex subsets of Y. The e-neighborhood of a set Ae2¥ is
defined by

B(A):={yeY|d(y,A)<e}, where d(y, A) :=inf{{|ly —alllac4}.

A function F: X - 2" is called a set-valued (or multivalued) mapping’

* The work of the second (resp. third) author was performed while she (resp. he) was a
visiting scholar at The Pennsylvania State University during the period April 1983 through
June 1985 (resp. August 1983 through August 1984).
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from X into Y. F is called lower semicontinuous (ls.c.) at a point x,€ X if
whenever W is an open set in Y with F(x,)n W+# (J, there exists a
neighborhood U of x, such that F(x) n W # J for every xe U. F is called
almost lower semicontinuous (a.ls.c.) at x, if for each ¢> 0, there exists a
neighborhood U of x; such that

() BF(x))# .

xelU

F is called lower semicontinuous (1s.c.) [resp. almost lower semicontinuous
(als.c.)] if it is Ls.c. (resp. a.ls.c.) at each point of X.

A selection (resp. e-approximate selection) for F is a function f: X > Y
such that f(x)e F(x) (resp. f(x)e B,(F(x))) for every x in X. Observe that
every selection is an e-approximate selection, but the converse is false in
general.

The important and well-known selection theorem of Michael can be
stated as follows.

1.1. THeoreEM {Michael [11]). If Y is complete and F: X — €6(Y) is
Ls.c., then F has a continuous selection.

While lower semicontinuity of F is sufficient for the existence of a
continuous selection, it is in general not necessary. Deutsch and Kenderov
have characterized almost lower semicontinuity and in the process showed
that it is a necessary condition for the existence of a continuous selection.

1.2. THEOREM (Deutsch and Kenderov [5]). Let F: X > %(Y). Then F
is als.c. if and only if for each ¢ >0, F has a continuous s-approximate selec-
tion.

In particular, a.ls.c. is weaker than ls.c. It was also observed in [5] that,
in certain cases, the almost lower semicontinuity of F is equivalent to the
existence of a continuous selection for F. (This is the case, for example,
when Y is one dimensional and F: X — 4(Y) has bounded images, or when
the set of points in X where F(x) is a singleton is dense in X.) This has
some interesting ramifications when F is a metric projection.

Recall that the metric projection or nearest-point mapping onto a (finite-
dimensional) subspace Y of the normed linear space X is the mapping
Py: X —2Y defined by

Py(x):={yeYllx—yl=dx Y)}.

That is, P,(x) is the set of all best approximations ( =nearest points) in Y
to x. It is well known that P, has nonempty, closed, convex, and bounded
images so Py: X - 4(Y).
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The main results of the paper can now be briefly summarized.
Theorem 2.4 characterizes when F has a continuous selection and is a kind
of “dual” to a theorem of Michael (see Theorem 2.6) where lower semicon-
tinuity was characterized. A characterization of almost lower semicon-
tinuity by a property which is (formally) stronger than that of Theorem 1.2
is given in Theorem 3.3. Theorem 4.5 is a geometric characterization of
those one-dimensional subspaces Y of a normed linear space X such that
P, admits a continuous selection. Using Theorem 4.5, we give in
Theorem 5.1 (resp. Theorem 6.3) an intrinsic characterization of those one-
dimensional subspaces Y in the classical Banach space Cy(T), T locally
compact (resp. L,(T, &, 1)) such that P, admits a continuous selection.
The former result generalizes a theorem of Lazar, Morris, and Wulbert
[10], who proved the particular case when T is compact by a more
involved argument. The latter result generalizes a theorem of Lazar [9],
who proved the special case of /,-space. In contrast to our unified
approach, the methods used in [10] are completely different from those
used in [9].

2. LOWER SEMICONTINUITY AND CONTINUOUS SELECTIONS

In this section we study some connections between lower semicontinuity
and certain kinds of continuous selections. For ease of reference, we collect
some basic known facts about constructing new Ls.c. maps from given ones
in the next proposition (see, €.g., [11]).

2.1. ProPoOSITION. (1) If F: X - 2Y is Ls.c., so are the mappings F, co(F),
and TO(F). (Here F(x):=F(x), where the bar denotes closure and
co(F)(x) :=co(F(x)), where “co” denotes “convex hull of.”)

(2) IfG;: X—2Visls.c. foreachiel, then\),., G, is also ls.c., where
(Uier G)(x) :=Uic; Gix).

(3) Let F: X2 be lsc., A a nonempty closed set in X, and
o: A—> Y a continuous function with a(x)e F(x) for every xe€ A. Then the
mapping G defined on X by

_ [F(x) if xeX\4
G(x"{{a(x)} if xed

is Ls.c.

2.2. DEFINITION. Let F, G: X - 2". G is called a submap of F, denoted
G < F, provided G(x) < F(x) for every xe X.
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If & is a collection of submaps of F, a mapping Goe & is called a
maximal submap for & if Ge & and G,c G implies G =G,

2.3. LeMMA. If F: X - 4(Y) has a maximal Ls.c. submap, it is unique.

Proof. Let G, and G, both be maximal ls.c. submaps of F. Then the
map G =G, UG, is Ls.c. by 2.1(2) and the map T6(G) is Ls.c. by 2.1(1). But
G,cTo(G) = F for i=1, 2. Since G, is maximal for i=1, 2, it follows that
€(G)=G,for i=1,2 and hence G,=G,. |

The next result shows that while ls.c. is not necessary to guarantee a
continuous selection, some submap must be Ls.c.!

2.4. THEOREM. Let Y be complete and F: X — €(Y). Then the following
Statements are equivalent.

(1) F has a continuous selection;

(2) F has “local” continuous selections, ie., for each x,€ X, there is a
neighborhod U(x,) of x, and a continuous function f: U(x,) - Y such that
Jxo(x) € F(x) for every x e U(x,)

(3) F gas a (unique) maximal l.s.c. submap

(4) F has a ls.c. submap.

Proof. (1)=>(2). This is obvious since the restriction of a continuous
selection f to any neighborhood U(x,) of x, can be chosen for f, .
(2)=>(1). Suppose (2) holds. Since X is paracompact, the open cover
{U(xy)|xo€ X} of X has a locally finite refinement {V;|iel}. For each
iel, choose x;e X so that V,c U(x;). Using paracompactness, we can
choose a partition of unity {p;|iel} subordinate to {V,|iel}. That is,
each function p;: X — [0, 1] is continuous, p,=0off V,, and 3 ;_,; pAx)=1
for all xe X. Define f on X by

f0)=F p0fulx)  xek,

Given any x € X, there is a neighborhood of x which intersects only finitely
many of the V', so xe V, for only a finite set of indices I(x) in I Thus f is
well-defined, continuous, and has range in Y. Further,

fx)= 3} pix) fq(x)€co(F(x))=F(x)

iel(x)
so f is a continuous selection for F.

(1)=(3). Assume F has a continuous selection f and let £ denote
the collection of all ls.c. submaps of F. ¥ #J since fe¥. Define

640/53/3-3
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Go={G|Ge £}. By Proposition 2.1(2), G, is Ls.c. Further, the map
H=1t06(G,) is Ls.c. by 2.1(1). Also, G < H for every Ge ¥. That is, His a
maximal ls.c. submap for .#. By Lemma 2.3, H is unique.

(3)=(4). Obvious.
(4)=(1). Suppose G is a ls.c. submap of F. Then G, :=Co(G) is a

l.s.c. submap also. By Michael’s selection theorem 1.1, G, has a continuous
selection which is obviously also a continuous selection for F. |

One can give an explicit formula for the maximal Ls.c. submap.

2.5. PROPOSITION. Suppose F:X —»%(Y) has a continuous selection.
Define a mapping F* on X by

F*(x):={yeF(x)| there is a continuous selection f for F with f(x)= y}.
(2.5.1)

That is,
F*={J{f1|/ is a continuous selection for F}.

Then F* is the unique maximal ls.c. submap of F. In particular,
F*: X->4€(Y).

Proof. Clearly F* is ls.c. by Proposition 2.1(2), and F* is a submap of
F. If F* were not maximal, there would exist a l.s.c. submap F, of F with
F*c F, and F* # F,. By replacing F, with T6(F,), we may assume-that F,
has closed convex images. Then there is an x, € X with Fo(xo)\F*(x,) # .
Choose y, € Fo(xo)\F*(x,) and define H on X by

Fo(x) if x#x,

H(x)= { .
{yo} if x=x,.

By 2.1(3), H: X > %(Y) is ls.c. so, by Theorem 1.1, H has a continuous

selection f: X' > Y. Since H is a submap of F, f is also a continuous selec-

tion for F with f(x,)= y,. Hence y,€ F*(x,), a contradiction. Thus F* is

maximal and the proof is complete. |

Theorem 2.4 equates the existence of a continuous selection for F with
the existence of a lower semicontinuous submap of F. There is an
interesting “dual” result to this which equates the lower semicontinuity of F
with the existence of extensions of continuous selections for certain restric-
tions of F. It is essentially due to Michael and can be stated as follows.
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2.6. THEOREM (Michael [11]). Let Y be complete and F: X - €(Y).
Then the following statements are equivalent.

(1) Fislsc;

(2) For each closed subset A of X, each continuous selection for F| ,
has an extension to a continuous selection for F;

(3) For each xq€ X and yy€ F(x,), there exists a continuous selection
f for F with f(xy)=y,, i.e, F=F*

[Actually, Michael verified the implications (1)< (2) and (3)=(1) in
[11]. To verify (2)=>(3), let A= {x,}, f(x¢) = yo, and observe that f is
(trivially) a continuous selection for F|,. Thus it has an extension to a
continuous selection for F.]

It follows that if F is 1.s.c. and there is some point x, where F(x,) is not a
singleton, the F can mot have a unique continuous selection. More
precisely, we have the next corollary.

2.7. COROLLARY. Assume Y is complete, F: X - €6(Y) is ls.c., and F(x,)
is not a singleton for some x,€ X. Then F has at least card(F(x,)) distinct
continuous selections.

Proof. By Theorem 2.6, for each y,€F(x,), F has a continuous
selection f with f(x,)= y,. There are obviously at least card(F(x,)) such
selections. ||

For certain mappings (which include metric projections onto subspaces),
it is possible to characterize lower semicontinuity in terms of the existence
of a continuous selection having an additional property.

2.8. THEOREM. Let Y be a complete subspace of the normed linear space
X and F: X - €(Y). Assume that
ker F:={xe X|0€ F(x)}
is closed and F is “additive modulo Y,” i.e., for each xe X and y€ Y,
Fx+ y)=F(x)+ y. (2.8.1)

Then F is ls.c. if and only if F has a continuous selection f which is “kernel-
preserving,” ie., f(x)=0 for every xeker F.

Proof. Suppose F is ls.c. Then the restriction mapping F|,,, » has a
continuous selection (viz. g=0). By Theorem 2.6, F has a continuous
selection f which is an extension of g. Thus f is kernel-preserving.
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Conversely, suppose F has a continuous selection which is kernel-preser-
ving. Let xoe X and let W be an open set in Y with F(x,)n W+ 5. We
will show that there is a neighborhood U of x, such that F(x)n W # & for
all xe U. Let yoe F(xy) n W. Then there is an &> 0 such that B,(y,)c W.
Now 0e F(xg) — yo=F(xo— ¥o) 80 f(xy— yo) =0. Choose a neighborhood
U, of z4 :=x,— y, so that

J(z)e B(f(z,)) = B,(0)

for every ze U,. Then U := Uy + y, is a neighborhood of x, and for each
xeU, x=z+ y, for some ze U,. Thus

S(2)+ yo€ [F(z)+ yo] N [B,(0) + yo]
=F(z+ yo) 0 B(yo) = F(x)n B(yo) = F(x)n W

implies that F(x) ~ W# (J for every x e U. This proves that Fis Ls.c. at x,.
Since x, was arbitrary, Fis ls.c. ||

Recall that a subspace Y of the normed linear space X is called
proximinal if

Py(x):={yeY|lx—yl=dx, )}

is nonempty for every x € X. For example, any finite-dimensional subspace
is proximinal. It is well known and easy to prove that P, is additive
modulo Y and

ker Py:={xeX|0ePy(x)} = {xeX||x]| =d(x, Y)}

is closed. Thus, as consequence of Theorem 2.8, we immediately obtain the
following result of Kriiger.

2.9. THeoreM (Kriiger [8]). Let Y be a complete proximinal subspace
of the normed linear space X. Then Py is ls.c. if and only if P, has a
continuous selection f with f(x)=0 for every xeker P,.

Remarks. (1) The proof of Theorem 2.8 is an obvious generalization of
Kriiger’s original proof for the special case of metric projections. (His proof
also used Proposition 2.1(3).)

(2) There are mappings which are not metric projections but which
satisfy the hypothesis of Theorem 2.8. For example, F(x):= Py(x)+ f(x),
where f: X — Y is any continuous function satisfying f(x + y)= f(x) for
every xe X and ye Y.
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3. ALMOST LOWER SEMICONTINUITY AND CONTINUOUS SELECTIONS

The distinction between lower semicontinuity and almost lower semi-
continuity is further elucidated in the next lemma.

3.1. LeMMa. Let F: X 2% =x,eX, and consider the following
statements.
(1) Fisls.c. at xq4:

(2) For each yo€ F(x,) and ¢ > Q, there exists a neighborhood U of x,
such that

¥o€ () B(F(x)); (3.1.1)
xel
(3) For each yo€ F(x,) and each net x, = x,,
d(y,, F(x,)) > 0; (3.1.2)
(4) There exists y,€F(x,) such that for each net x,— x,

d(y,, F(x,)) - 0;

(5) There exists yo€ F(xo) such that for each £¢>0, there exists a
neighborhood U of x, with

o€ () BF(x));

xel

(6) For each €>0, there exists a neighborhood U of x, such that

R n| () 8.5 |+ (313)

xelU
(7) Fis als.c. at x,.

Then
(1)< (2)<«=(3)=4) <= (5)=(6) <= (7).

Moreover, if F(x,) is compact, then (6)=>(5) and the last four statements
are equivalent. If F(x,) is a singleton, then all seven statements are
equivalent. If X is a metric space, then “net” may be replaced by “sequence”
in (3) and (4).

Proof. The equivalence of the first three statements is well known and
goes back at least to Hahn [7].



274 DEUTSCH, INDUMATHI, AND SCHNATZ

The implication (3)=>(4) is obvious.

(4)=(5). Suppose (5) fails. Then for each y,e F(x,) there exists an
¢>0 such that for each neighborhood U of x,, there is an x, e U with
Yo B(F(xy)), ie., d(yo, F(xy))=¢ Then the net {x,} converges to x,
but (3.1.2) fails. Thus (4) fails.

(5)=>(4). Assume (5) holds and let {x,} be a net converging to x,.
For any ¢>0, choose a neighborhood U of x, so that (3.1.1) holds.
Then x,e U eventually so y,e B,(F(x,)) eventually, ie., d(y,, F(x,))<e
eventually. Thus (3.1.2) holds.

The implications (5)= (6) and (6)=(7) are obvious.

(7)=(6). Suppose F is als.c. at x, and let £>0. Then there is a
neighborhood U of x, such that

ﬂ Be/z(F(x)) # .

xel

Select any ye (), v B.»(F(x)). For each x € U, choose y, € F(x) such that
Iy — y.ll <&/2. It follows that

1Ve= Yol S1ys =Yl +ly—yel <e

for each xe U. Hence y, € (). v B(F(x)) and so (3.1.3) holds. This verifies
-~ (6).

Now assume F(x,) is compact and (6) holds. We will show that (5)
holds. For each integer n, there is a neighborhood U, of x, such that

A, :=F<xo)n[ N Bl/n(F(x))];e@.

xe Uy

Select any y,e A,. By compactness of F(x,), the sequence {y,} has a
cluster point y, e F(x,). Now let {x,} be a net in X with x, — x,. Then for
each n, x, € U, eventually. Hence y, € B,,(F(x,)) for « eventually so

d(yo, F(x,))<d(yo, y,) +d(y,, F(x,))
<d(yo, ya)+ 1/n

Since y, is a cluster point of {y,}, for each ¢ >0 and integer n with n> 2/e,
there is an ny>n such that d(y,, y,)<e/2. Hence d(y,, F(x,))<e
eventually. This verifies (5).

The remainder of the proof is easy. [

An example given at the end of [ 5] shows that the implication (4) = (3)
is false, even when F(x,) is compact and F is a metric projection
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onto a one-dimensional subspace. Also, P. Kenderov has communicated an
example to us showing that the implication (6) = (5) is false when F(x,) is
not compact.

3.2. DEFINITION. A subset 7 of X is called discrete if I\{x} is closed for
each x € I. Equivalently, I is discrete iff I has no accumulation points iff I is
closed and, for each x eI, there exists a neighborhood U of x such that
Unil={x}.

Note that each discrete set is necessarily closed, and every finite set is
discrete. The next result is a strengthening of Theorem 1.2,

3.3. THEOREM. Let F: X —->%(Y). Then the following statements are
equivalent.
(1) Fisalsc,;
(2) For each xoe X and ¢>0, there is a continuous e-approximate
selection f for F with f(x,)€ F(xg),

(3) For each discrete set I in X and ¢ >0, there exists a continuous
e-approximate selection f for F with f(x)e F(x) for all xe L

Proof. (1)=(2). Assume Fis a.ls.c. and fix any x, € X. By Theorem 1.2,
for every ¢ >0, there exists a continuous &/2-approximate selection f, for F.
Choose any yq e F(x,) with f,(x,) € B,;5(yo). Define f on X by

J(x)=fi(x) + yo— fi(xo)-
Then f is continuous,

f(x)€ B,,(F(x)) + B,5(0) = B,(F(x))

for every x e X, and f(x,) = yo € F(x;). Thus f is a continuous
g-approximate selection for F with f(x,) e F(x,). This proves (2).

(2)=1(3). Assume (2) holds, let I be a discrete set in X, and £> 0.

Then for each x € I, there exists a continuous g-approximate selection f, for
F such that f,(x)e F(x). Define

U(x) = X\(N\{x})=(X\D U {x}.

Then {U(x)|xeI} is an open cover of X. Let {V;|je J} be a locally finite
refinement of {U(x)|xeI}. For each jeJ, choose x,€ I so that V< U(x,).
Choose a partition of unity { p;| je J} subordinate to the cover {V,| jeJ}.
Then each p; is continuous, 0< p;<1, p;=0off ¥;, and 3., pi(x)=1 for
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every xeX. In particular, p,(x)=0 for all x¢ U(x;) so p/(x)=0 for all
xeI\{x;} and hence p,(x;)= 1. Define f on X by

S(x)=Y plx) fi(x), xeX
jed
Then f is continuous,

f(x)eco{f(x}|je ]} = co(B(F(x))) = B.F(x))

for all xe X, and, if xel, f(x)=f,(x)eF(x). Thus f is a continuous
e-approximate selection for F such that f(x)e F(x) for every xel This
proves (3).

The implication (3) = (1) follows by Theorem 1.2. |

4. CONTINUOUS SELECTIONS FOR METRIC PROJECTIONS ONTO
ONE-DIMENSIONAL SUBSPACES

In this section we will be exclusively connerned with the metric projec-
tion onto a one-dimensional subspace. A geometric characterization of
when such a metric projection admits a continuous selection is obtained. In
the last two sections, this result will be used to obtain intrinsic charac-
terizations of the one-dimensional subspaces in Co(T) and L,(u) whose
metric projections admit continuous selections.

Let X be a normed linear space, y, € X\{0}, and let [ y,] denote the
one-dimensional subspace spanned by y,:

[yi):={ayilaeR}.
The following result of [5] is central to our development. It essentially
states that a rather weak continuity property of P, ; is equivalent to the
existence of a continuous selection.
4.1. THEOREM [5]. The following statements are equivalent.

(1) P,y has a continuous selection;
(2) Pryyisalsc,
(3) Pp,qis 2-ls.c.

Recall [5] that P,,; is 2-Ls.c. at xo€ X if, for each £> 0, there exists a
neighborhood U of x, such that

B.(P;,(x1)) N B(Pp,1(x2)) # & (4.1.1)

whenever x,, x,e U.
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If I is any (bounded or unbounded) closed interval in R, we define

Iy, :={ay,|ael}.

In particular, Ry, = (— o0, o) y, is what we earlier denoted by [ y,]. It is
well known that for every xe X,

P[yl](x)zlx Y1

for some compact interval I, depending on x.
Fix any x e X. It is not hard, using the convexity of the function f(x)=
x4+ oy, a€R, to verify that

Prax)=> =111y (4.1.2)
holds if and only if
Ixlh=llx+ yill = llx— yil. (4.13)

It will be convenient to single out those xe X which have either of the
equivalent properties (4.1.2) or (4.1.3). Define

P([)n] = {XEXIP[M](X)D ['"1’ 1] yl}
= {xeX|llxll = llx+ yill = llx =yl }. (4.14)

4.2. LEMMA. The following statements are equivalent.

(1) Ppyqis 2-Lsc,
(2) Pr,qis 2-Ls.c. on ker P, q;
(3) P,y is 2-ls.c.on PO ;.

Proof. Since P}, ,cket P, ,, the implications (1)=(2)=>(3) are
obvious.

(3)=(1). Suppose P= P, fails to be 2-ls.c. at some x,€ X. Then
there exist ¢ >0 and sequences x, — x, and x,, — x, with

B(P(x,)) N B,(P(x,)) = &

for all n. Now P(x,)= [ag, Bo] y, for some f,>ay. Set yo=13(ag+ o)y,
and 6=4(Bo—og) Ho=1, let zg=x4— yo, z,= X, — ¥g, and z, = x,, — y,.
Then z, - zq, 2, > z,, and

Bc(P(Zn))n BS(P(Z;)) = BE(P(xn) - yO) N BS(P(x;l)_ yO)
= B.(P(x,)) " B(P(x,))— yo=
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for all n. Also,

P(zg) = P(xo) — yo= [y, Bol y1 — 3(ag + o) ¥,
=[_6’6]y13[_1a l]yl

If 0<d<1, let zo=(1/8)(xo— yo) z,=(1/8)(x,—po), and z,=
(1/8)(x,,— yq)- Then z, — z,, z, — z,, and
B.(P(z,))n B(P(z,))=B lP( )——1- B 1P A
& n 3 n}) = D¢ 5 Xn 5}’0 NDb, _5_ (xn)_gyojl

1 1
=5 [Bs(P(x,)) N Bs(P(x,))] _5 Yo

1
<5 [B.(P(x,)) N B,(P(x,))] —% Yo
=
for all n. Also,

1 1 1 1
P(20)=5P(x0)——5 J’0=5 [, Bol J’1_§‘5(“0+ﬂ0))’1

1
:5 [_53 5]}}1: [_1, l]yl

In either case, we see that P is not 2-ls.c. at z, and z,€ P}
fails. |

Thus (3)

nl-

For a given x € X, the set of peaking functionals for x is the subset of the
dual space X* defined by

Jx) == {x*e X*|x*(x) = ||x] },

where X* := {x*e X*||lx*|| < 1}. The annihilator of the subspace [ y,] is
the set

yi={x*eX*|x*(y,)=0}.
The extreme points of any set B in the dual space X* will be denoted by

ext B. Since J(x) is a nonempty weak* compact extremal subset of X * for
any x, it follows that J(x) has extreme points and ext J(x) cext X *.



CONTINUOUS SELECTIONS 279
4.3. LeMMA. Let P, (xo) = [ao, Bo] ¥y with ag < B, and a € R. Then:

(1) a<ayif and only if

J(xo—ay,) < {x* € X*|x*(y,)>0}. (43.1)
(2) > B, if and only if

J(xo—ay,) < {x* e X*|x*(y,)<0}. (432)
(3) If ae (g, Bo), then

J(xo—ay;)c {x*€ X*|x*(y,)=0}. (433)

(4) If (4.3.3) holds, then

o€ [ay. Bol (434)
(5) Ifa=aq (resp. a=By) and ay# B, then
J(xo—ay )= {x*e X*|x*(y,) >0} (4.3.5)

(resp. J(xo—ay;) = {x* e X*|x*(y,)<0}).

Proof. Let aeR. Then for each ye [a, Bo] and x* e J(x,—ay,), we
have

llxo —oy,ll = x*(xo —ay ) = x*(xo —yp,) + (¥ — o) x*(y,)
< lxo =yl + (y — ) x*(yy)
=d(xo, [y11)+(y—a) x*(»,).

Hence setting
8(a) := llxo — ay |l — d(xo[ 1 1)
we have that
o)< (y—a) x*(yy) (4.3.6)
for every y e [, Bo] and x* € J(x, — ay,).

(1) Assume a < ay. Then d&(a) > 0 and (4.3.6) implies that
(y —a)x*(y,) >0 for all y € [ay, By] and x* € J(x, — ay,). Hence
x*(y.)>0 for all x*eJ(x,—ay,) and (4.3.1) holds.

Conversely, suppose (4.3.1) holds. We will show that « <, From
(4.3.6) we deduce that y —a >0 for all y € [ag, Bo]. In particular, o < aq. If



280 DEUTSCH, INDUMATHI, AND SCHNATZ

o =0y, then by the Hahn—Banach theorem, there exists x* e J(xo—ay,) N
yi. But this contradicts (4.3.1). Thus « < a,.

(2) The proof is similar to (1).

(3) Let ae(xg, Bo)- Then by (4.3.6), we see that (y —a) x*(y,) =0 for
all x*eJ(xo—ay,) and ye[ay, fo]. It follows that x*(y,)=0 for all
x*eJ(xy—ay,). That is, (4.3.3) holds.

(4) Suppose (4.3.3) holds. From (1) and (2) it follows that
oo S < fo. That is, (4.3.4) holds.

(5) Leta=ua, and ay# . By (4.3.6), we see that (y —ay) x*(y,) =0
for all ye [ay, Bo] and all x* € J(xo — agy;). In particular,
(Bo— ) x*(y,)=0 or x*(y;)=0 for all x*eJ(xy—ayy;). This verifies
(4.3.6). The case a = f, is similar. |

44. COROLLARY. Let P(xy)=[ag, Boly, With 2y < B,.

m I

J(xo—ay )N {x*e X*|x*(y,)>0} # &, (44.1)
then o < ay.
2)
J(xo—ay )N {x*e X*|x*(y,) <0} #, (4.4.2)
then a = f,.

Proof. (1) If (4.4.1) holds, then by Lemma 4.3(2) and (3), we see that
o< By and a¢é (a9, By). Thus a<<ay or a=pf,. If ag=pf,, we're done. If
o, # B and a = f, then by 4.3(5),

J(xo—ay,)c {X*EX*lx*()ﬁ)SO},
which contradicts (4.4.1). Thus, in every case, o < o
(2) The proof is similar. ||

In the product space X x X'*, we assume that X has its norm topology
and X'* its weak* topology. Thus a net {(x,, x¥)} in X x X* converges to
(xo, x¥), denoted (x,, x¥)— (x,, x¥), if and only if |x,— x,| =0 and
x¥ - xF weak*, ie., x¥(x) - x¥(x) for every xe X.

For any x,eker P;,; and o€ {+1, —1}, we define a subset of X* as
follows.

A(xq, 0) 1= yi nJ(xo) N {x¥ e X¥*| thereis a net {(x,, x¥)}
in X x X* with (x,, x*) - (x0, x¥), x¥ eext J(x,+ oy,),

and xX(oy,) <0 for all n}.
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We now state the main result of this section.

4.5. THEOREM. The following statements are equivalent.

(1) P,y does not have a continuous selection,;

(2) There exist xo€ker P, 1, disjoint compact intervals I and I' in R,
and sequences {x,} and {x,} converging to x, such that for every n,

P[y,](xn)cl)’n P[y,](X;x)CI,JH; (4.5.1)

(3) There exists xo€ X with ||xoll =|lxo— v, = lIxo + y1ll such that
A(xO, +1)¢Q and A(.xO, _1)¢g.

PrOOf. Let P=P[y1]'

(1)=>(2). If P does not have a continuous selection, then (by
Lemmas 4.1 and 4.2) P fails to be 2-1s.c. at some x, € ker P with P(x,)=
[%, Boly: and &y < fB,. Thus there exist sequences {x,} and {x} both
converging to x, such that

B.(P(x,))n B(P(x,))=O for all n.

Letting P(x,)=1,y, and P(x,) =1, y, for some compact intervals [, and I,
in R, it follows that

B(I,y,)nB(I,y,)=g  foralln. (4.5.2)

We may assume sup [, <inf/, for all n; in fact, by (45.2) we have
(assuming, as we may, that ||y,| =1) that

sup I, + 2¢ <inf 7. (4.5.3)

Since these intervals are uniformly bounded, by passing to a subsequence,
we deduce that there exist intervals J and J' such that I,c B,,(J),
I,c B, ,(J'), Je B,,(1,), and J < B, ,(I',) for all n. Using (4.5.3), it follows
that

Be/2(J) N Be/2(']’) = Be(In) N BE(I;l) = Q

Thus setting /=N, ,(J) and I' = B,,(J'), we see that [ and I’ are disjoint
compact intervals with I, =7 and I, = I for all n. That is, (4.5.1) holds.

(2)=(3). Let xgeker P, I and I’ be disjoint compact intervals in R,
and let {x,} and {x],} be disjoint sequences with x, — x, and x,, - x, such
that

P(x,)cly;, and  P(x,)<Ty,
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for all n. By translating x,, x,, and x|, by an appropriate multiple of y,, we
may assume that

sup I< —d<é<infrl'

for some 6 > 0. Further, by scaling these same vectors by 6!, we may also
assume that

sup/< —1<1l<infr. (4.54)

Using the well-known upper semicontinuity of P, it follows that for each
£>0,

P(x,)= B,(P(xo)) and  P(x,) < B,(P(x,))

for n sufficiently large. Using (4.5.4) we deduce that P(x,)>[—1,1] y, or,
from the equivalence of (4.1.2) and (4.1.3),

[xoll = llxo + y11l = llxo = wol.- (4.5.5)

Now P(x,)=[a,,B,]y, for some a,<f, and [a,, B,]cI since
P(x,)=ly,. By (454), B,<—1 so by Lemmad.3(2), J(x,+ y,)c
{x*e X¥|x*(y,)<0}. Select any x}eext J(x,+ y,). Then x*(y,)<0. By
the weak* compactness of X¥, there is a subnet of {x¥} (which we also
denote by {x}*}) that weak* converges to some x¥ € X*. We will show that
x& € yi nJ(x,). First note that since x*(y,)<0 for all n, x¥(y,)<0. If
x¥(y,) <0, then there exists 6 <0 such that x*(y,) < —3J eventually. Hence

I, + yill = x¥(x,+ y1) < xF(x,)—0  eventually

< x,ll —o.
Passing to the limit yields
X0+ yill < [ xoll — & < lIxoll-

But this contradicts (4.5.5). Thus we must have x3(y,)=0 or x} e yi.
Also,

x§(xo) = (x& — x¥)(x0) + X ¥ (x0— X,) + X} (X, + y1) — X1 (¥1)
= (x& — %7 )(x0) + x7 (x0 = x,) + X, + 31l = x7 (1)
—0+0+ flxo+ yill +0=1lxo.

That is, x&eJ(x,). This proves that x&e yi nJ(x,) and (x,, x}) -
(%o, x&). Thus A(xe, +1)# .
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A similar proof (using P(x,) instead of P(x,)) shows that
A(xq, —1)# . Thus (3) is verified.

(3)=(1). Assume that there exists x,e X with |xgll = |xo— yll =
|xo+ y.|l such that A(x,+ 1) # & and A(x,, —1)# . Let x§ € A(x,, +1).
Then x§ € yi nJ(x,) and there exists a net (x,, x})e X x X* such that
X, = Xg, X¥ = x}¥ weak*, x¥eext J(x,+ y,), and x*(y,) <0 for all n. Then
by Corollary 4.4(2), we have that 8, < —1, where P(x,) :=[«,, B,.]1¥:.

Similarly, using the fact that A(x,, —1)# &, we deduce from 4.4(1)
that there exists a sequence {x,} converging to x, and 1<a,, where
P(x,) = [a;, B,.] y,. Clearly, P is not 2-Ls.c. at x,. Hence P cannot have a
continuous selection by Theorem 4.1. §

5. ONE-DIMENSIONAL SUBSPACES IN Cy(T)

Let T be a locally compact Hausdorff space and let Cy(7T) be the linear
space of all continuous real functions x on T which “vanish at infinity,” ie.,
the set {teT||x(¢z)| =¢} is compact for each ¢>0. Endowed with the
supremum norm | x|| =sup{|x(¢){|t€ T}, Co(T) is a Banach space. When T
is compact, Co(T) reduces to the Banach space of all continuous real
functions on 7, and is usually denoted by C(T).

The boundary (resp. cardinality) of a subset Z of T is denoted by bd Z
(resp. card Z). The zero set of an element xeCy(T) is the set
Z(x) :=x"'(0). We shall say that x does not change sign at ¢ if there is a
neighborhood U of ¢ such that either x>0 on U or x<0 on U.

By the well-known Arens—Kelley theorem [1] (stated for T compact but
also valid when T is locally compact; see [3, Lemma 3.3] for this and other
generalizations),

ext Co(T)¥ = {oe,|o= +1,1e T},
where ¢, is defined on Cy(T) by
e,(x):=x(t), x€ Co(T).

Moreover, ext Co(T)} is weak* closed if T is compact, and when T is not
compact, the weak* closure of ext Co(7T)F is the union of ext Co(T)§ and 0.

The main result of this section is the following intrinsic characterization
of those one-dimensional subspaces in Cy(T) whose metric projections
admit continuous selections. In the particular case when T is compact, it
had been established by Lazar, Morris, and Wulbert [10] by a rather
lengthy ad hoc argument. Our proof is based on Theorem 4.5 and is
relatively short and direct.
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5.1. THEOREM. Let y, € Co(T)\{0}. The following statements are
equivalent.

1) P; 4 has a continuous selection;
[y

(2) (i) card[bd Z(y,)]1 <1 and, (ii) for each tebd Z(y,), y, does not
change sign at t.

Proof. We may assume | y,|| <1.

(1)=>(2). Supose (2) fails. Then either card[bd Z(y,)]>1 or
bd Z(y,)= {to} and y, changes sign at ¢,.

Case 1. card[bd Z(y,)]> 1.

Choose distinct points t, and f; in bd Z(y,). There are four possible
locations for these points: either (i) ¢, t,€ y; '((0, ®)), (ii) to€ ¥ ((0, )
and 15y M((—o0,0)), (iii) to, toe y;((—0,0)), or (iv) te€
y7'((—00,0)) and t5€e y;'((0, 0)). By replacing y, with —y,, (iii) is
subsumed in (i) and (iv) is subsumed in (ii). Thus we need only consider
the possibilities (1) and (ii).

Case 1(i). ty,toe{teT|y,(1)>0}.

Choose disjoint neighborhoods U, to #, and Uy of t;. Using Urysohn’s
lemma, it is possible to choose an x,e Co(T) such that 0=x,>
(=1+y)Aa(—1=yp)onU, 0<x,<(1+y) A(l—y)on Up, xo=0o0ff
Uy Uy, xo(to)= —1, and x4(25) = 1. Then ||x,| = 1. Also, for te U,,

1< y,(O)<yi() = xo() S y (1) = [(=1+ yi(1)) v (=1 = yi(2))]
=)+ A=y A1+ p(1)
=1A(1+2,())< 1.

For t€ Uy,
1< =y() <xp() =y (1) <1 A (1 =2p,(2)) < 1.
For t¢ Uyu Uy,

[xo(t) = 1) = |y, ()| < 1.

Finally, since |xq(ty) — y,(2o)] = |xo(26)] = 1, it follows that ||xo— y,|=1.
Similarly, [lxo+ y|l = 1. Thus |Ixof = [|xo — y1ll = X0 + »:]l-

Let % be the collection of all neighborhoods U of t,, ordered by
inclusion. Then N{U|Ue#} = {1,} and, for each Ue %, we can choose a
point ¢, € U such that y,(¢,)>0. Then the net {¢,} converges to #,. By
Urysohn’s lemma, for each Ue %, there exists a function g, e Co(T) such
that 0< g, <1, g,=0 off U, and g, (¢,)=1. Then the function x,:=
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gu(—1—xg— y)+x0 is in Co(T), xy < xq since —1 —(xo+ y,}<0, and
Xy =x, off U. Given any ¢> 0, choose a neighborhood U, of #, such that
xo(t)< —1+¢/2 and y,(t)<e/2 for teU,. Thus for every Ue# with
UcU,, and for all te U, we see that

[x () = xo(D) € yy(D+ x0()+ 1 <&

Hence |x, — x,ll <¢ so the net {x,} converges to x,. Further, for every
teT,

Ixo(0) + yi(0)] = [gu)(=1) + [1 = g )] {xo(t) + y1(1)}]
Sgul)+ [I—gu()]Ilixo+ il =1
since | xq+ y,|l = 1. Since
xylty) + yilty) = —gulty) = -1,
it follows that ||x,+ y,fl=1 and
—[xulty)+ yit) I =lxu+ 1l

Setting x¥ = —e,,, we see that x}eext J(xy,+ y,), xH(y,1) <0, and {x}}
converges weak* to x§ := —e, € J(xo) N yi. This proves that A(x,, 1) # &.

Similarly, there exist a net 1}, — 5 with y,(¢y,) > 0 for all U and functions
x7p, € Co(t) with x7, — x, such that

Xop(ty) = yi(ty) = Xy = yill.

Then the functions x3' i=e, are in extJ(xy—y,), xF(—y,)<0, and
{x¥} converges weak* to x§':=e,eJ(xo)n yi. This proves that
A(x09 '_1)#@

Case 1(ii). toe {teT|y,(t)>0} and rye {te T|y,(t)<0}.

Choose neighborhoods Uy, of ¢, and Uj of ¢p. By Urysohn’s lemma, there
exists x,e Co(T) so that O0=xy=2(—-1+y,)v(—1—1y)), x;=0 off
U Uy, and xo(2g) = xo(£5) = —1. Then ||x,|l = 1. Furthermore, just as in
Case 1(i), it is easy to verify that ||xq|| = ||xo— ¥ill = lxo + yill.

Let % denote the collection of all neighborhoods U of ¢, ordered by
inclusion. For each Ue %, choose any ¢, € U such that y,(¢,)>0. Again,
just as in the proof of Case 1(i), we obtain a net {x,} in Co(T) converging
to x, and elements x¥ = —e, eext J(x,+ y,) with x}(y,)<0 and {x}}
weak™ converges to some x§ = —e, € J(xo) N yi. Thus A(x,, 1) # .

Next let %' denote the collection of all neighborhoods U’ of f; ordered
by inclusion. For each U’ e %, we can choose ¢,.€ U’ such that y,(z,.) <O0.
By Urysohn’s lemma, choose g, € Co(T) such that 0< g, < 1, gty ) =1,
and g, =0 off U'. Then, arguing just as in Case 1, the function x, =
gul—l=xo+y:1+x, is in Co(T), Xy =X, and xy(ty)— yi(ty)=

640/53/3-4
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—llxys— y4ll. Thus the functions x3¥.:= —e, are in extJ(x, —y,)
and weak* converge to x§:= —e,€J(xo)n yi. This proves that
A(xy, —1)# .

Case 2. bd Z(y,={t,} and y, changes sign at ¢, ie, fy€
{teT|y,(1)>0}n{reT| y,(r)<0}.

Let U, be a neighborhood of 7, and set Uy = U,,. Then by the exact same
proof as in Case 1(ii), we obtain xye Co(T) with |xof = llxo— ¥l =
xo+ yill, A(xq, 1) # &, and A(x,,1) # .

In every case we have obtained an xye Co(T) with [ xof = |xg— y,ll =
lxo+ yill, A(xo, +1) # &, and A(x,, —1)# . By Theorem 4.5, P, does
not have a continuous selection. That is, (1) fails.

(2)=>(1). Suppose (1) fails. Then by Theorem 4.5, there exists
xo € Co(T) with ||x,f = | xo— p|| = llxo + 4]l such that A(x,, +1)# & and
A(xy, —1)# . Since A(x,, +1)# J, there exist xg*eJ(x) N yi and a
net (x,, 6,¢e,) in Co(T) x Co(T)* with x, > x,, 6,= *1, g,¢e, € J(x,+ y,),
c.e, — x§ weak*, and o,e,(y,) <0 for all n. Since x§ #0, it must be an
extreme point so x§ =age, for some o,= *1, #,€T. Since o,¢, weak*
converges to g,e¢,, we must have o, a, and t,—1,. By passing to
a subnet, we may assume that ¢,=0, for all n. Since x}e yi and
oo ¥1(t,) <0 for all n, it follows that t,ebd Z(y,). Since x¥eJ(x,), we
have a¢xo(t9) = [ ol s0 o= sgn xo(Zo).

Similarly, since A(x,, —1)# &, there exist x¥ eJ(x,)n yi and a net
(xns a4e,) in Co(T)x Co(T)* with x;, > x,, 0,= *1, 6,6, — x§' weak®,
one,€J(x,—y), and o,e,(—y;)<0 for all n. Arguing as above, we
deduce that x3'=0ge,, go=sgn xo(fo), frebd Z(y,), a5yi(1,)>0 even-
tually, and 1, — 1. If ¢,+# ¢}, then condition (2)(i) is violated. If ¢, =1y,
then o,=0g and y,(r,) y,(2,) <0 so y, changes sign at #,. Thus condition
(2)(ii) is violated. This proves that (2) fails. |

It would be of interest to know whether an analogous result holds for
any finite-dimensional subspace in Cy(T).* In the special case when
T=[a, b], this has been accomplished as the culmination of a long series
of papers by Niirnberger and Sommer (see their survey paper [12] and the
references cited there).

When T is any set with the discrete topology, the boundary of any subset
of T is empty and condition (2) of Theorem 5.1 is vacuously satisfied. In
particular, if T is the set of natural numbers with the discrete topology,
then Cy(T)=: ¢, and we obtain the following corollary.

5.2. COROLLARY. The metric projection onto every one-dimensional
subspace in ¢, has a continuous selection.

* Wu Li has recently produced such a result in the case when T is locally connected.
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Actually, as a consequence of a result of Blatter [2], ¢, has the property
(P) of Brown [4]. Thus the metric projection onto any finite-dimensional
subspace of ¢, is Ls.c. and hence has a continuous selection.

6. ONE-DIMENSIONAL SUBSPACE IN L,

Let (T, %, u) be a measure space and let L, =L (7T, &, u) denote the
Banach space of all integrable functions x on T with the norm

Ixl=] 1xl du.

The support of a function xe L, is the set supp x := {re T|x(¢)#0} and
the zero set of x is

Z(x):=T\supp x= {re T|x(t)=0}.

(Here, and in the sequel, all sets in T are only defined up to a set of
u~-measure zero.) We shall assume that L¥ = L. This will be the case, for
example, if (T, &, u) is o-finite.

A set Ae¥ is called an atom if pu(A)>0 and either u(B)=0 or
u(B)=pu(A) whenever Be ¥ and Bc A.

The following lemma collects some facts about atoms that will be needed
in this section.

6.1. LEMMA. (1) For each x € L,, supp(x) is “o-finite,” ie., is a countable
union of sets having finite measure.

(2) There are at most a countable number of atoms in a o-finite set,
and each such atom has finite measure.

(3) A measurable function x is constant a.e. (1) on an atom A of finite
measure; this value will be denoted by x(A).

(4) If E€ has the property that 0 < u(E)< oo and E contains no
atoms, then for each sequence of positive numbers {¢,} there exists a
sequence of pairwise disjoint sets {E,} in E with 0 < u(E,) <e, for every n.

These facts seem fairly well known with the possible exception of (4).
However, (4) can be proved using the same idea as in the proof of Sak’s
lemma [6, pp. 308-309].

6.2. DeFINITIONs. A set Ee & will be called unifat if it is the union of a
finite number of atoms. An element y, € L, is said to satisfy the Lazar con-
dition if whenever A and B are disjoint sets in & with A U B=supp(y,)
and [, |y, du= (g |yl du, then one of the sets A or B must be unifat.
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The main result of this section is the following intrinsic characterization
of those one-dimensional subspaces in L, whose metric projections admit
continuous selections.

6.3. THEOREM. Let y, € L\{0}. Then P, has a continuous selection if
and only if y, satisfies the Lazar condition.

Before giving the proof, we observe a few immediate corollaries of this
theorem.

6.4. COROLLARY. If supp(y,) contains no atoms, then P, . does not
have a continuous selection.

Related to this corollary, Lazar, Morris, and Wulbert [10] proved that
if T contained no atoms, then the metric projection onto any finite-dimen-
sional subspace in L,(7, &, u) does not have a continuous selection.

6.5. COROLLARY. If'supp(y,) is a finite union of atoms, then P, | has a
continuous selection. In particular, if L, is finite dimensional, the metric
projection onto any one-dimensional subspace has a continuous selection.

The next corollary is due to Lazar and provided the motivation for the
name “Lazar condition.” It follows immediately from Theorem 6.3 taking
T=N="the natural numbers,” & all subsets of N, and u counting
measure on &, i.e., u(E)=card(E). Then L (T, &, u) =1, and Theorem 6.3
reduces to

6.6. CoroLLARY (Lazar [9]). Let y, el \{0}. Then P, has a con-
tinuous selection if and only if whenever A and B are disjoint sets of integers
with

AU B={ieN|y (i) #0}
and

Z [y = Z [y1(D),

icA ieB
then either A or B must be finite.
The remainder of this section is devoted to a proof of Theorem 6.3.
6.7. LEMMA. Let T, be a o-finite subset of T. If T, is not unifat, then

there exists a sequence {E,} of pairwise disjoint subsets of T, with
0 < u(E,) < o such that, for any xe L,,

lim L x| dy=0. (6.7.1)
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Proof. Since T, is not unifat, either T, is the union of a countable
infinity of atoms, or u(7,\4) >0, where A4 is the union of all atoms in T,.
In the latter case, we set E=T,\A4 and apply Lemma 6.1(4). This yields a
sequence {E,} of pairwise disjoint subsets of T with lim,,_, , u(E,)=0. For
any xeL,, the condition (6.7.1) is a well-known consequence of the
monotone convergence theorem,

In the former case, we have

o0
T,=J4,,
1
where {4,} is a sequence of pairwise disjoint atoms. Now for each xe L,,

Y1) A= Ixldu<[ x| du=lxl) < oo
1 An T

Uy

so lim,, _, ,, |x(4,)| u(4,)=0. Hence

L x| dyu = |x(4,,)| 1(4,) 0.

Setting E, = A, for all n, the result follows. ||

It is well known that ext(L_,) consists of all those measurable functions f
on T such that |f| =1 ae. (u). Also, for each x*e L}, there is a unique
feL, such that

x*(x)=[ xfdu,  xelL,
T
and ||x*| =ess supp | f|. We shall call f the representer of x*.

6.8. LEMMA. Let y, € L\{0} and let xy€ L, satisfy
lxoll = llxo + yill = llxo— 4l (68.1)
Let x} € yi nJ(xy), suppose fo€ L, is the representer of x&, and define
T+ :={tesupp y| fo(t) =sgn y,(1)}
T~ :={tesupp y,| fo(t) = —sgn y,(1)}.
Then:

(1) supp fo>supp xo=>supp y, and supp y, =T 0 T".
(2) T* =supp(xo+y1), T~ =supp(xo— yy)
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(3) If T* is unifat, then x}¢ A(x,,1); if T~ is unifat, then
x§ ¢ A(xo, —1).

Proof. (1) By (6.8.1), it follows that x§ € J(x,— y,) N J(xo+ ¥,). Thus

Jofodi=txal  and [ (xokyi)fodu=lxox

implies that

sign x,(2) a.c. on supp X,
Jo(t)={sgnlxo() + y,(1)]  ae. onsupp(xo+ y;) (6.8.2)
sgnxo(r)— y1(1)]  a.e. onsupp(xo—y;).

Hence if 7€ supp y,\supp x,, we have that
Jo(t)=sgn y,(t)= —sgn y,(?),

which is impossible. Hence

p(supp y;\supp xo) =0,

or supp y, = supp x,. Also, since fo(#) =sgn x,(¢) on supp x,, it follows
that supp x,csupp f,. Finally, if fesupp y;, then fy(t)= +1 so
supp v, =T+ruT".

(2) If teT™, then resupp y, and fy(¢)=sgn y,(¢). But supp y, <
supp xg and fy(7) =sgn xo(t). Thus y(t) x4(¢)>0 and tesupp(xy+ y,)
That is, T+ = supp(x, + y,). Similarly, T~ < supp(xo— )

(3) Assume T is unifat. Then T* = (J¥ 4,, where the 4, are pairwise
disjoint atoms and 0 < u(4;) < 00. To show that xF ¢ A(x,, 1), it suffices to
show that if {(x,, x¥)} is any net in L, x L¥ with x, > x,, x* - x} weak*,
and x}eJ(x,+ y;), then x¥(y,) =0 eventually. Let {(x,, x¥)} be such a
net and let f,e L. be the representer of x* Since T* < supp(xy+ y,)
by (2), it follows that x,(4,)+ y,(4,)#0 for i=1,2,..,k Since
X, + ¥y = Xo+ yy, it follows that x,(A4,)+ y(A4,)—= xo(A;}+ yi(4;) so
X (A;)+ y,(4,)#0 eventually (for i=1, 2, .., k). Since x}feJ(x,+ »,),

SfulA)=sgn[x,(4,)+ y,(4,)]
=sign[xq(A4;)+ y1(4,)] eventually
= fo(4,) by (6.8.2).
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That is, f, = f, eventually on T*. Hence, for n eventually,

xtp0=[ fivdu=]  foyida

THo

=] Soyidut| foyida
>L+ Joyi du—L_ 21 a’u=jr+ Jor du+L_ foyidu

= foyidue=xg(3)=0.
THuT™

Thus x§ ¢ A(x,, 1).
Similarly, if T~ is unifat, then xJ ¢ 4(x,, —1). |

Now we are in position to prove Theorem 6.3.

Proof of Theorem 6.3. Suppose y, fails the Lazar condition. We will
show that there exists x,€ L; with ||xo| = [|xo — ¥ = [lxo + y.1| such that
A(xo, 1) # & and A(x,y, —1)+# . The assumption on y, implies that there
exist disjoint sets A4 and B such that 4uB=supp y,, [4|p,ldu=
{slyildu, and neither 4 nor B is unifat. By Lemma 6.7, there exist
sequences {E,} and {F,} of pairwise disjoint sets such that E, < 4, F, < B,
O<u(E,)< oo, 0<u(F,)< o, and, for each xe L,,

lim L x| du=0= lim L x| dy. (63.1)

Define functions f; and x, on T by

sgn y,(?) for ted
Jo(t)=1{ —sgn y,(t1) for teB
1 otherwise
and
yi(1) for teA
xo(t)={ —y,(t) for teB
0 otherwise.

Then fye L, esssup |fyl=1, and x,€L,. A simple computation shows
that

X0l = llxo=yill =lixo+ x4l (=1y:l)
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and, letting f, be the representer of the functional x§ e L¥, we see that

xFeyi oJ(x,) and x& eext(L}),.
Next define functions f, in L, by

. fO on T\En
f" B { _fO on En

and functions x, in L, by

n

_fxo on T\E,
" |-2y, on E,

Let f, be the representer of xXeLf Then xXeext(L,); and a
straightforward computation verifies that

X3 30 = ol = |1yl du= e, + yil.
That is, x¥ eext J(x, + y,). Next observe that
1%, = xol =3 | 1yil du—0
E,
by (6.3.1). Further, for any xe L,
xp0)=[ fuvde=|  foxdu—| foxdu
T T\E, Ey

=[ foxdu—2[ foxdu=xg(x)=2] foxdu
T E, E,
- xF(x) by (6.3.1).

That is, x} — xF weak*. Finally,
x.’,"(yl)=f fnyldu=f foyldu—f foyyap
T T\E, E,

=Lfo)’1 dH—ZL’lfo)ﬁ du

i

~2| Iyl du<o.
E,

This proves that x§ € A(x,, 1).
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Similarly, deﬁning f. and x, on T by

fro fo onT\F, o = 4%o on T\F,
" 2y, onF,

—fo, onF, "

and letting f,, be the representers for the functionals x*’, we can prove that
(x),, x¥) > (xg, x§), x¥ eext J(x,,— y,), and x¥'(—y,) <0 for all n. Thus
x§ € A(xo, —1). By Theorem 4.5, it follows that P, does not have a
continuous selection.

Conversely, suppose P, fails to have a continuous selection. Then by
Theorem 4.5 there exists x,& L, with

lxoll = llxo — y4ll = llxo + 4l
such that A(x,, +1)# & and A(xy, —1)# &. For each e {+1, —1}, let
x¥e A(x,, 0) and let f, e L be the representer of x*. Define
T\(a) := {tesupp y,| f,(t)=sgn y,(2)}
Ty(o) == {tesupp y,| f,(1)= —sgn y,(1)}.

Since x* e yi nJ(x,), Lemma 6.8 implies that

supp f, = supp xo > supp y,,
Ty(o)u Ty(c)=supp y, and T(o)nTyo)=. (63.2)

Further, x} e y; implies that

jrl(a)|Y1|dﬂ=j |yl dp.

Tao)

If y, has the Lazar condition, then for each ge { +1, —1} either T,(s)
or T,(c) is unifat. If ¢=1, then since x}eA(x,, +1), it follows by
Lemma 6.8(3) that 7',(1) is not unifat. Hence 7,(1) is unifat. Similarly,
since x* € A(xy, —1), To(—1) is not unifat and T,(—1) is unifat. Since
x¥eJ(x,) for 6= +1, it follows that

Jit)=sgn xo(1)=f_(1)

for all resuppx,>suppy,;. Thus T,(1) n T(-1) =& and
T\(—=1)nT,(1)= . But this implies by (6.3.2) that T,(—1)< T,(1) and
T,(1)c T,(—1). That is, T,(—1) = T,(1). But T,(1) is unifat and T,(—1) is
not unifat. This contradiction shows that y, fails to have the Lazar
condition, and completes the proof. |

It would be interesting to know whether there is an analogue of
Theorem 6.3 for subspaces of L, of any finite dimension greater than one.
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of

10.

11,
12.

ACKNOWLEDGMENTS

We are indebted to P. Kenderov and T. Fischer for some helpful comments on a first draft
this manuscript.

REFERENCES

. R. F. Arens anp J. L. KELLEY, Characterizations of the space of continuous functions,
Trans. Amer. Math. Soc. 62(1947), 499-508.

. J. BLATTER, Zur Stetigkeit von mengenwertigen metrischen Projektionen, Schriftenreihe
Rh.-Westf. Inst. Math. Univ. Bonn, Ser. A 16 (1967), 19-38.

. B. Brosowskl AND F. DEUTSCH, On some geometrical properties of suns, J. Approx.
Theory 10 (1974), 245-267.

. A. L. BRowN, Best n-dimensional approximation to sets of functions, Proc. London Math.
Soc. 14 (1964), 577-594.

. F. DeutscH anD P. KeNDEROV, Continuous selections and approximate selections for set-
valued mappings and applications to metric projections, SJAM J. Math. Anal. 14 (1983),
185-194.

. N. DunrorD AND J. T. ScCHWARTZ, “Linear Operators,” Part I, Interscience, New York,
1958.

. H. HauN, “Reele Funktionen,” Akad. Verlagsgesellschaft, Leipzig, 1932 (reprinted by
Chelsea, New York, 1948).

. H. KRUGER, A remark on the lower semicontinuity of the set-valued metric projection,
J. Approx. Theory 28 (1980), 83-86.

. A. J. LAZAR, Spaces of affine continuous functions on simplexes, Trans. Amer. Math. Soc.

134 (1968), 503-525.

A.J. LAZAR, P. D. Morris, aND D. E. WULBERT, Continuous selections for metric projec-

tions, J. Funct. Anal. 3 (1969), 193-216.

E. MicHAEL, Continuous selections, 1, 4nn. of Math. 63 (1956), 361-382.

G. NORNBERGER AND M. SoMMER, Continuous selections in Chebyshev approximation, in

“Parametric Optimization and Approximation” (B. Brosowski and F. Deutsch, Eds.),

ISNM 72, Birkhiduser, Basel, 1985.



