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For a set-valued mapping, the relationships between lower semicontinuity,
almost lower semicontinuity, and the existence of various kinds of continuous selec
tions for the mapping are explored. For the spaces ColT) and £1> intrinsic charac
terizations are given of the one-dimensional subspaces whose metric projections
admit continuous selections. © 1988 Academic Press, Inc.

1. INTRODUCTION

Let X be a paraeompact space, Y a normed linear space, 2 Y the collec
tion of all nonempty subsets of Y, and <6'( Y) the collection of all nonempty,
closed, and convex subsets of Y. The e-neighborhood of a set A E2 Y is
defined by

B£(A):= {y E YI d(y, A) < e}, where dey, A) :=inf{lIy-alilaEA}.

A function F: X --+ 2 Y is called a set-valued (or multivalued) mapping'

* The work of the second (resp. third) author was performed while she (resp. he) was a
visiting scholar at The Pennsylvania State University during the period April 1983 through
June 1985 (resp. August 1983 through August 1984).
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from X into Y. F is called lower semicontinuous (l.s.c.) at a point Xo E X if
whenever W is an open set in Y with F(xo) n W"# 0, there exists a
neighborhood U of Xo such that F(x) n W"# 0 for every x E U. F is called
almost lower semicontinuous (a.l.s.c.) at Xo if for each B> 0, there exists a
neighborhood U of Xo such that

n Be(F(x»)"# 0·
XE U

F is called lower semicontinuous (l.s.c.) [resp. almost lower semicontinuous
(a.l.s.c.)] if it is l.s.c. (resp. a.l.s.c.) at each point of X

A selection (resp. B-approximate selection) for F is a function f: X -+ Y
such that f(x) E F(x) (resp. f(x) E Be(F(x)) for every x in X Observe that
every selection is an B-approximate selection, but the converse is false in
general.

The important and well-known selection theorem of Michael can be
stated as follows.

1.1. THEOREM (Michael [11]). If Y is complete and F: X -+C6'(Y) is
l.s.c., then F has a continuous selection.

While lower semicontinuity of F is sufficient for the existence of a
continuous selection, it is in general not necessary. Deutsch and Kenderov
have characterized almost lower semicontinuity and in the process showed
that it is a necessary condition for the existence of a continuous selection.

1.2. THEOREM (Deutsch and Kenderov [5]). Let F:X-+C6'(Y). Then F
is a.l.s.c. if and only iffor each B> 0, F has a continuous B-approximate selec
tion.

In particular, a.l.s.c. is weaker than l.s.c. It was also observed in [5] that,
in certain cases, the almost lower semicontinuity of F is equivalent to the
existence of a continuous selection for F. (This is the case, for example,
when Y is one dimensional and F: X -+ C6'( Y) has bounded images, or when
the set of points in X where F(x) is a singleton is dense in X) This has
some interesting ramifications when F is a metric projection.

Recall that the metric projection or nearest-point mapping onto a (finite
dimensional) subspace Y of the normed linear space X is the mapping
p y: X -+ 2 Y defined by

Py(x):= {YE Ylllx- yll =d(x, Y)}.

That is, Py(x) is the set of all best approximations (=nearest points) in Y
to x. It is well known that P y has nonempty, closed, convex, and bounded
images so P y: X -+ C6'( Y).
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The main results of the paper can now be briefly summarized.
Theorem 2.4 characterizes when F has a continuous selection and is a kind
of "dual" to a theorem of Michael (see Theorem 2.6) where lower semicon
tinuity was characterized. A characterization of almost lower semicon
tinuity by a property which is (formally) stronger than that of Theorem 1.2
is given in Theorem 3.3. Theorem 4.5 is a geometric characterization of
those one-dimensional subspaces Y of a normed linear space X such that
P y admits a continuous selection. Using Theorem 4.5, we give in
Theorem 5.1 (resp. Theorem 6.3) an intrinsic characterization of those one
dimensional subspaces Y in the classical Banach space Co(T), T locally
compact (resp. LI(T, [1', Il)) such that P y admits a continuous selection.
The former result generalizes a theorem of Lazar, Morris, and Wulbert
[10], who proved the particular case when T is compact by a more
involved argument. The latter result generalizes a theorem of Lazar [9],
who proved the special case of II-space. In contrast to our unified
approach, the methods used in [10] are completely different from those
used in [9].

2. LOWER SEMICONTINUITY AND CONTINUOUS SELECTIONS

In this section we study some connections between lower semicontinuity
and certain kinds of continuous selections. For ease of reference, we collect
some basic known facts about constructing new I.s.c. maps from given ones
in the next proposition (see, e.g., [11]).

2.1. PROPOSITION. (1) IfF: X -+ 2 y is l.s.c., so are the mappings F, co(F),
and co(F). (Here F(x):= F(x), where the bar denotes closure and
co(F)(x) := co(F(x)), where "co" denotes "convex hull of")

(2) If Gi: X -+ 2 y is l.s.c. for each i E I, then Ui E I Gi is also l.s.c., where
(UiE I G;)(x) := UiEI Gi(x).

(3) Let F: X -+ 2 y be l.s.c., A a nonempty closed set in X, and
oc A -+ Y a continuous function with lX(x)EF(x) for every XEA. Then the
mapping G defined on X by

is l.s.c.

{
F(X)

G(x)= {IX(X)}
if xEX\A

if xEA

2.2. DEFINITION. Let F, G: X -+ 2 y. G is called a submap of F, denoted
G c F, provided G(x) c F(x) for every x E X.
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If !/ is a collection of submaps of F, a mapping Go E!/ is called a
maximal submap for !/ if G E!/ and Go c G implies G = Go.

2.3. LEMMA. If F: X ...... ~(Y) has a maximal l.s.c. submap, it is unique.

Proof Let G1 and G2 both be maximal l.s.c. submaps of F. Then the
map G = G1 U G2 is l.s.c. by 2.1(2) and the map co(G) is l.s.c. by 2.1(1). But
Gicco(G)cF for i= 1, 2. Since Gi is maximal for i= 1, 2, it follows that
co(G)=Gifor i=I,2 and hence G1 =G2 · I

The next result shows that while l.s.c. is not necessary to guarantee a
continuous selection, some submap must be l.s.c.!

2.4. THEOREM. Let Y be complete and F: X ...... ~(Y). Then the following
statements are equivalent.

(1) F has a continuous selection;

(2) F has "local" continuous selections, i.e., for each Xo E X, there is a
neighborhod U(xo) of Xo and a continuous function fxo: U(xo) ...... Y such that
fxo(x) E F(x) for every XE U(xo)

(3) F gas a (unique) maximall.s.c. submap

(4) F has a l.s.c. submap.

Proof (1)=>(2). This is obvious since the restriction of a continuous
selection f to any neighborhood U(xo) of Xo can be chosen for fxo'

(2) => (1). Suppose (2) holds. Since X is paracompact, the open cover
{U(xo) IX oE X} of X has a locally finite refinement {Vi liE I}. For each
i E I, choose Xi E X so that Vi c U( Xi)' Using paracompactness, we can
choose a partition of unity {PiliEI} subordinate to {ViliEI}. That is,
each function Pi: X ...... [0,1] is continuous, Pi=O ofT Vi' and LiEf Pi(X) = 1
for all x E X. Define f on X by

f(x)= L Pi(x)fxi(X), XEX,
iEI

Given any x E X, there is a neighborhood of x which intersects only finitely
many of the Vi so x E Vi for only a finite set of indices I(x) in I. Thus f is
well-defined, continuous, and has range in Y. Further,

f(x)= L pi(x)fx,(X)ECO(F(x))=F(x)
iE f(xl

so f is a continuous selection for F.

(1) => (3). Assume F has a continuous selection f and let 2 denote
the collection of all l.s.c. submaps of F. 2 t- 0 since f E 2. Define

640/53/3-3
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Go = U{G IG E .P}. By Proposition 2.1(2), Go is J.s.c. Further, the map
H == co(Go) is J.s.c. by 2.1 (1). Also, G c H for every G E.P. That is, H is a
maximal l.s.c. submap for .P. By Lemma 2.3, H is unique.

(3) :=;. (4). Obvious.

(4):=;. (l ). Suppose G is a l.s.c. submap of F. Then Go := co(G) is a
l.s.c. submap also. By Michael's selection theorem 1.1, Go has a continuous
selection which is obviously also a continuous selection for F. I

One can give an explicit formula for the maximal l.s.c. submap.

2.5. PROPOSITION. Suppose F: X --+ ~(Y) has a continuous selection.
Define a mapping F* on X by

F*(x) := {YEF(x) I there is a continuous selectionffor Fwithf(x) = y}.

(2.5.1 )

That is,

F* = U{f If is a continuous selection for F}.

Then F* is the unique maximal l.s.c. submap of F. In particular,
F*: X --+ ~(Y).

Proof Clearly F* is l.s.c. by Proposition 2.1(2), and F* is a submap of
F. If F* were not maximal, there would exist a l.s.c. submap Fo of F with
F* c Fo and F* #- Fo. By replacing Fo with co(Fo), we may assume-that Fo
has closed convex images. Then there is an X oE X with Fo(xo)\F*(xo) #- 0.
Choose Yo E Fo(xo)\F*(xo) and define H on X by

if x#- Xo

if X=Xo'

By 2.1 (3), H: X --+ ~(Y) is l.s.c. so, by Theorem 1.1, H has a continuous
selection f: X --+ Y. Since H is a submap of F, f is also a continuous selec
tion for F with f(xo) = Yo. Hence Yo E F*(xo), a contradiction. Thus F* is
maximal and the proof is complete. I

Theorem 2.4 equates the existence of a continuous selection for F with
the existence of a lower semicontinuous submap of F. There is an
interesting "dual" result to this which equates the lower semicontinuity of F
with the existence of extensions of continuous seleCtions for certain restric
tions of F. It is essentially due to Michael and can be stated as follows.
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2.6. THEOREM (Michael [11]). Let Y be complete and F: X -. '?f( Y).
Then the following statements are equivalent.

(l) F is l.s.c.;

(2) For each closed subset A of X, each continuous selection for FIA
has an extension to a continuous selection for F;

(3) For each X oE X and Yo E F(xo), there exists a continuous selection
f for F with f(xo) = Yo, i.e., F= F*.

[Actually, Michael verified the implications (1)<::>(2) and (3)~(1) in
[11]. To verify (2)~ (3), let A = {xo}, f(xo) = Yo, and observe that f is
(trivially) a continuous selection for FIA" Thus it has an extension to a
continuous selection for F.]

It follows that if F is l.s.c. and there is some point X o where F(xo) is not a
singleton, the F can not have a unique continuous selection. More
precisely, we have the next corollary.

2.7. COROLLARY. Assume Y is complete, F: X -. '?f( Y) is l.s.c., and F(xo)
is not a singleton for some X oE X. Then F has at least card(F(xo)) distinct
continuous selections.

Proof By Theorem 2.6, for each Yo E F(xo), F has a continuous
selection f with f(xo) = Yo. There are obviously at least card(F(xo)) such
selections. I

For certain mappings (which include metric projections onto subspaces),
it is possible to characterize lower semicontinuity in terms of the existence
of a continuous selection having an additional property.

2.8. THEOREM. Let Y be a complete subspace of the normed linear space
X and F: X --+ '?f( Y). Assume that

ker F:= {xEXIOEF(x)}

is closed and F is "additive modulo Y," i.e., for each x E X and y E Y,

F(x + y) = F(x) + y. (2.8.1 )

Then F is l.s.c. if and only if F has a continuous selection f which is "kernel
preserving," i.e., f(x) = 0 for every x E ker F.

Proof Suppose F is l.s.c. Then the restriction mapping Flker F has a
continuous selection (viz. g = 0). By Theorem 2.6, F has a continuous
selection f which is an extension of g. Thus f is kernel-preserving.
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Conversely, suppose F has a continuous selection which is kernel-preser
ving. Let X oE X and let W be an open set in Y with F(xo) n W ¥ 0. We
will show that there is a neighborhood U of X o such that F(x) n W ¥ 0 for
all x E U. Let Yo E F(xo) n W. Then there is an t: > 0 such that B,( Yo) c W.
Now 0 E F(xo) - Yo = F(xo- Yo) so f(xo - Yo) = O. Choose a neighborhood
Uo of Zo := Xo- Yo so that

f(z) E B,(f(zo)) = B,(O)

for every z E Uo. Then U:= Uo+ Yo is a neighborhood of Xo and for each
XE U, x=z+ Yo for some zE Uo. Thus

f(z) + Yo E [F(z) + Yo] n [B,(O) + Yo]

= F(z + Yo) n B,(Yo) = F(x) n B,(Yo) c F(x) n W

implies that F(x) n W ¥ 0 for every x E U. This proves that F is l.s.c. at Xo'
Since Xo was arbitrary, F is l.s.c. I

Recall that a subspace Y of the normed linear space X is called
proximinal if

Py(x):= {YE Ylllx- yll =d(x, Y)}

is nonempty for every x E X. For example, any finite-dimensional subspace
is proximinal. It is well known and easy to prove that P y is additive
modulo Yand

ker P y := {xEXIOEPy(X)}:= {xEXlllxll =d(x, Y)}

is closed. Thus, as consequence of Theorem 2.8, we immediately obtain the
following result of Kriiger.

2.9. THEOREM (Kriiger [8]). Let Y be a complete proximinal subspace
of the normed linear space X. Then P y is l.s.c. if and only if P y has a
continuous selection f with f( x) = 0 for every x E ker P y.

Remarks. (1) The proof of Theorem 2.8 is an obvious generalization of
Kriiger's original proof for the special case of metric projections. (His proof
also used Proposition 2.1 (3 ).)

(2) There are mappings which are not metric projections but which
satisfy the hypothesis of Theorem 2.8. For example, F(x) := Py(x) + f(x),
where f: X -+ Y is any continuous function satisfying f(x + y) = f(x) for
every XE X and yE Y.
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The distinction between lower semicontinuity and almost lower semi
continuity is further elucidated in the next lemma.

3.1. LEMMA. Let F: X -+ 2 Y, XoE X, and consider the following
statements.

(1) F is l.s.c. at Xo:

(2) For each Yo E F(xo) and I> > 0, there exists a neighborhood U of Xo
such that

YOE n Be(F(x));
XE U

(3) For each Yo E F(xo) and each net Xn -+ Xo,

(3.1.1 )

(3.1.2)

(4) There exists Yo E F(xo) such that for each net Xn -+ Xo,
d(yo, F(x n )) -+ 0;

(5) There exists Yo E F(xo) such that for each I> > 0, there exists a
neighborhood U of Xo with

Yo E n Be(F(x));
XE U

(6) For each I> > 0, there exists a neighborhood U of Xo such that

(3.1.3)

(7) F is a.l.s.c. at Xo.

Then

(1)~ (2)~ (3) => (4)~ (5) => (6)~ (7).

Moreover, if F(xo) is compact, then (6) => (5) and the last four statements
are equivalent. If F(xo) is a singleton, then all seven statements are
equivalent. If X is a metric space, then "net" may be replaced by "sequence"
in (3) and (4).

Proof The equivalence of the first three statements is well known and
goes back at least to Hahn [7].
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The implication (3) => (4) is obvious.

(4)=>(5). Suppose (5) fails. Then for each YoEF(xo) there exists an
e > 0 such that for each neighborhood U of Xo, there is an x v E U with
YoiB,(F(x v )), i.e., d(yo, F(xv))~e. Then the net {xv} converges to Xo
but (3.1.2) fails. Thus (4) fails.

(5) => (4 ). Assume (5) holds and let {xn} be a net converging to xo.
For any I: > 0, choose a neighborhood U of X o so that (3.1.1) holds.
Then XnE U eventually so Yo E B,(F(xn)) eventually, i.e., d(yo, F(xn)) < e
eventually. Thus (3.1.2) holds.

The implications (5) => (6) and (6) => (7) are obvious.

(7) => (6). Suppose F is a.l.s.c. at Xo and let e > 0. Then there is a
neighborhood U of X o such that

n B'/2(F(x)) -:f' 0·
XEV

Select any Y E nXE v B'/2(F(x)). For each x E U, choose Yx E F(x) such that
II Y - Yx II < e12. It follows that

for each x E U. Hence Yxo E nx E V B,(F(x)) and so (3.1.3) holds. This verifies
(6).

Now assume F(xo) is compact and (6) holds. We will show that (5)
holds. For each integer n, there is a neighborhood Un of Xo such that

An := F(xo) r{x0
v

n B1/n(F(x))] -:f' 0.

Select any YnEAn' By compactness of F(xo), the sequence {Yn} has a
cluster point Yo E F(xo). Now let {x,,} be a net in X with x" ---t Xo' Then for
each n, x~ E Un eventually. Hence Yn E B1/n(F(x,,)) for ex eventually so

d(yo, F(x,,)) ~ d(yo, Yn) +d(Yn, F(x,,))

~ d(yo, Yn) + lin.

Since Yo is a cluster point of {yn}, for each e> °and integer n with n > 2/1:,
there is an no~n such that d(yo, Yno) < 1:/2. Hence d(Yo,F(x,,))<e
eventually. This verifies (5).

The remainder of the proof is easy. I
An example given at the end of [5] shows that the implication (4) => (3)

is false, even when F(xo) is compact and F is a metric projection
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onto a one-dimensional subspace. Also, P. Kenderov has communicated an
example to us showing that the implication (6) => (5) is false when F(xo) is
not compact.

3.2. DEFINITION. A subset I of X is called discrete if 1\ {x} is closed for
each x E I. Equivalently, I is discrete iff I has no accumulation points iff I is
closed and, for each x E I, there exists a neighborhood U of x such that
UnI= {x}.

Note that each discrete set is necessarily closed, and every finite set is
discrete. The next result is a strengthening of Theorem 1.2.

3.3. THEOREM. Let F: X -. C6'( Y). Then the following statements are
equivalent.

(1) F is a.l.s.c.;

(2) For each XoE X and t: > 0, there is a continuous t:-approximate
selection f for F with f(xo) E F(xo);

(3) For each discrete set I in X and t: > 0, there exists a continuous
t:-approximate selection f for F with f(x) E F(x) for all x E 1.

Proof (1) => (2). Assume F is a.l.s.c. and fix any XoE X. By Theorem 1.2,
for every t: > 0, there exists a continuous t:/2-approximate selection f1 for F.
Choose any Yo E F(xo) with f1 (xo)E Be/2( Yo)· Define f on X by

f(x)=fl(X)+ Yo- fl(X O)'

Then f is continuous,

for every x E X, and f(xo) = Yo E F(xo). Thus f is a continuous
t:-approximate selection for F with f(xo) E F(xo). This proves (2).

(2)=>(3). Assume (2) holds, let I be a discrete set in X, and t:>0.
Then for each x E f, there exists a continuous t:-approximate selection fx for
F such that fAx) E F(x). Define

U(x):= X\(l\ {x}) = (XV) u {x}.

Then {U(x) Ix E I} is an open cover of X. Let {Vj Ij E J} be a locally finite
refinement of {U(x) IXE f}. For each j E J, choose XjE f so that Vjc U(xJ
Choose a partition of unity {Pj Ij E J} subordinate to the cover {Vj Ij E J}.
Then each Pj is continuous, 0 ~ Pj ~ 1, Pj = 0 off Vj, and LjEJ pix) = 1 for
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every XEX. In particular, pix)=O for all x¢ U(xj) so Pj(x)=O for all
x E 1\ {xj } and hence pixJ = 1. Define f on X by

f(x)= LPj(x)fx/x), XEX.
jEJ

Then f is continuous,

f(x) E co {Jx/x) Ij E J} c co(Bt(F(x))) = Bt(F(x))

for all XEX, and, if xEI, f(x)=fAx)EF(x). Thus f is a continuous
e-approximate selection for F such that f(x) E F(x) for every x E I. This
proves (3).

The implication (3) => (1) follows by Theorem 1.2. I

4. CONTINUOUS SELECTIONS FOR METRIC PROJECTIONS ONTO

ONE-DIMENSIONAL SUBSPACES

In this section we will be exclusively connerned with the metric projec
tion onto a one-dimensional subspace. A geometric characterization of
when such a metric projection admits a continuous selection is obtained. In
the last two sections, this result will be used to obtain intrinsic charac
terizations of the one-dimensional subspaces in Co(T) and L,(Jl) whose
metric projections admit continuous selections.

Let X be a norrned linear space, y, E X\ {O }, and let [y,] denote the
one-dimensional subspace spanned by y,:

The following result of [5] is central to our development. It essentially
states that a rather weak continuity property of P[yll is equivalent to the
existence of a continuous selection.

4.1. THEOREM [5]. The following statements are equivalent.

(1) P [Yt] has a continuous selection;

(2) P[YIl is a.l.s.c.;

(3) p[Y/] is 2-I.s.c.

Recall [5] that P [Y/] is 2-I.s.c. at X oE X if, for each e> 0, there exists a
neighborhood U of X o such that

(4.1.1 )

whenever Xl' X2 E U.
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If I is any (bounded or unbounded) closed interval in R, we define
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In particular, RYI = (- 00,00) YI is what we earlier denoted by [YI]. It is
well known that for every x E X,

p[Yl](x)=IxYI

for some compact interval Ix depending on x.
Fix any x E X. It is not hard, using the convexity of the function f( a) =

Ilx+aYIII, aER, to verify that

holds if and only if

Ilxll = Ilx+ YIII = Ilx- YIII.

(4.1.2)

(4.1.3 )

(4.1.4)

It will be convenient to single out those x E X which have either of the
equivalent properties (4.1.2) or (4.1.3). Define

P~Yl]:= {xEXIP[Yl](x)::J [-1,1] yd
= {xEXlllxll = Ilx+ YIII = Ilx- Ydl}·

4.2. LEMMA. The following statements are equivalent.

(1) P [Yl] is 2-I.s.c.;

(2) p[yl] is 2-l.s.c. on ker p[y}];

(3) p[yIJ is 2-l.s.c. on P~yl]'

Proof Since P~Yl]cketP[Yl]' the implications (1)=>(2)=>(3) are
obvious.

(3) => (1). Suppose P = P [Yl] fails to be 2-l.s.c. at some Xo E X. Then
there exist e > 0 and sequences X n ~ Xo and x~ ~ Xo with

for all n. Now P(xo) = [ao, Po] YI for some Po> ao· Set Yo = !(ao + Po) YI
and [) = !(Po - ao)· If [) ~ 1, let Zo = X o- Yo, Zn = X n- Yo, and z~ = x~ - Yo.
Then Zn ~ ZO, z~ ~ zo, and

B,(P(zn)) n B,(P(z~)) = B,(P(xn) - Yo) n B,(P(x~) - Yo)

= B,(P(xn)) n B,(P(x~)) - Yo = 0
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for all n. Also,
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P(Zo) = P(xo) - Yo = [cxo, Po] Yl - !(cxo + Po) Yl

= [-b, b] Y1:::J [-1,1] Yl.

If 0 < b < 1, let Zo = (ljb)(Xo- Yo), Zn = (ljb)(Xn- Yo), and z~ =
(ljb)(X~ - Yo)· Then Zn -+ ZO, z~ -+ Zo, and

Be(P(zn)) n Be(P(z~)) = Be [~P(Xn) - ~ Yo] n Be [~P(X~) -~ Yo]

1 1
= -;5 [Bbe(P(xn)) n BbAP(x~))] - -;5 Yo

I I
C -;5 [Be(P(xn)) n Be(P(x~))] - -;5 Yo

=0

for all n. Also,

1 1 1 1
P(zo) = -;5 P(xo) - -;5 Yo = -;5 [cxo, Po] Yl - 2b (cxo + Po) Yl

1
=-;5[-b,b]Yl=[-1,1]Yl.

In either case, we see that P is not 2-l.s.c. at Zo and Zo EJ1Y1]. Thus (3)
fails. I

For a given x EX, the set of peaking functionals for x is the subset of the
dual space x* defined by

J(X) := {x* E X 1* Ix*(x) = Ilxll },

where Xr:= {x*EX*lllx*11 ~ 1}. The annihilator of the subspace [Yl] is
the set

yt:= {x*EX*lx*(Yd=O}.

The extreme points of any set B in the dual space X* will be denoted by
ext B. Since J(x) is a nonempty weak* compact extremal subset of X 1* for
any x, it follows that J(x) has extreme points and ext J(x) c ext xt
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4.3. LEMMA. Let P[Yl](XO) = Coco, Po] Yt with ao ~ Po and oc ER. Then:

(1) a < ao if and only if

J(xo- ocyd c {x* E X* Ix*(yd > O}.

(2) a> Po if and only if

J(xo-ocyd c {x*EX*lx*(yd<O}.

(3) If ocE(ao,{30), then

J(xo - ayd c {x* E X* Ix*(yd = O}.

(4) If (4.3.3) holds, then

a E [ao· Po].

(5) !fa=oco (resp. a=po) and ao=Fpo, then

J(xo-ayd c {x*EX*lx*(Yt)~O}

(resp. J(xo-ayd c {x*EX*lx*(yd~O}).

(4.3.1 )

(4.3.2 )

(4.3.3 )

(4.3.4)

(4.3.5)

Proof Let a ER. Then for each y E [ao, Po] and x* E J(xo- ayd, we
have

Ilxo - aYtl1 = x*(xo- ocyd = x*(xo- yyd + (y - a) x*(yd

~ Ilxo-yytll + (y-a)x*(yd

= d(xo, [Yt]) + (y - a) x*(yd·

Hence setting

we have that

<5(oc) ~ (y - a) x*(yd (4.3.6)

for every y E Coco, Po] and x* E J(xo- aYt).

(1) Assume oc < OCo' Then <5(a) > 0 and (4.3.6) implies that
(y - a) x*(yd > 0 for all y E Coco, Po] and x* E J(xo - ayd. Hence
x*(Yt»O for all x*EJ(xo-aYd and (4.3.1) holds.

Conversely, suppose (4.3.1) holds. We will show that a<ao. From
(4.3.6) we deduce that y-oc~O for all yE Coco, Po]. In particular, oc~ao. If
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a = ao, then by the Hahn-Banach theorem, there exists x* EJ(xo - ayd (\
yt. But this contradicts (4.3.1). Thus a<ao.

(2) The proof is similar to (1).

(3) Let a E (ao, Po). Then by (4.3.6), we see that (y - a) x*( yd ~ 0 for
all x* EJ(xo- ayd and y E [ao, Pol It follows that x*(yd = 0 for all
x* E J(xo- ay 1)' That is, (4.3.3) holds.

(4) Suppose (4.3.3) holds. From (1) and (2) it follows that
ao~ a ~ Po. That is, (4.3.4) holds.

(5) Let a=ao and ao=Fpo. By (4.3.6), we see that (y-ao)x*(yd~O
for all y E [ao, Po] and all x* E J(xo - aoYl)' In particular,
(Po-ao)x*(yd~O or x*(yd~O for all x*EJ(xo-aoyd. This verifies
(4.3.6). The case a = Po is similar. I

4.4. COROLLARY. Let P(xo)= [ao, Po] YI' with lXo~ Po·

(1) If

then lX~ao'

(2) If

J(xo-lXyd (\ {x* E X* Ix*(yd > O} =F 0, (4.4.1 )

(4.4.2)

then IX~Po'

Proof (1) If (4.4.1) holds, then by Lemma 4.3(2) and (3), we see that
IX~Po and lXi (lXo, Po)· Thus lX~ao or IX=Po. If lXo=Po, we're done. If
lXo =F Po and IX = Po, then by 4.3(5),

J(xo-lXyd c {x* EX*lx*(Yd~O},

which contradicts (4.4.1). Thus, in every case, IX ~ lXo.

(2) The proof is similar. I

In the product space Xx X*, we assume that X has its norm topology
and X* its weak* topology. Thus a net {(x n , x,;)} in Xx X* converges to
(xo, x6), denoted (x n , x';) -+ (xo, xJ'), if and only if Ilxn - xoll-+ 0 and
x'; -+ xJ' weak*, i.e., x:(x) -+ xJ'(x) for every XE X.

For any xoEker p[yiJ and UE {+1, -l}, we define a subset of X* as
follows.

A(xo, u) := yt (\ J(xo) (\ {xJ' EXt I there is a net {(xn , x:)}

in Xx X* with (xn , x;n -+ (xo, XO"), x: Eext J(xn + uyd,

and x,;(uyd < 0 for all n}.
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We now state the main result of this section.

281

4.5. THEOREM. The following statements are equivalent.

(1) P [yIJ does not have a continuous selection;

(2) There exist Xo E ker P [y,]' disjoint compact intervals I and I' in R,
and sequences {xn} and {x~} converging to Xo such that for every n,

(4.5.1 )

(3) There exists XoEX with Ilxoll = Ilxo- YIII = Ilxo+ YIII such that
A(xo, + 1) ~ 0 and A(xo, -1) ~ 0.

Proof Let P= PEn]'

(1) => (2). If P does not have a continuous selection, then (by
Lemmas 4.1 and 4.2) P fails to be 2-l.s.c. at some Xo E ker P with P(xo) =
[cxO,PO]YI and cxo<Po. Thus there exist sequences {xn } and {x~} both
converging to Xo such that

for all n.

Letting P(xn)= In YI and P(x~)= I~ YI for some compact intervals In and I~

in R, it follows that

for all n. (4.5.2)

We may assume sup In < infI~ for all n; in fact, by (4.5.2) we have
(assuming, as we may, that II YIII = 1) that

sup In + 2e < inf I~. (4.5.3 )

Since these intervals are uniformly bounded, by passing to a subsequence,
we deduce that there exist intervals J and J' such that In C Be/2(J),
l~cBe/2(J'), JcBe/2(In), and J' c Be/2(I' n) for all n. Using (4.5.3), it follows
that

Be/2(J) (") Be/2(J') c Be(In) (") Be(I~) = 0·

Thus setting 1= N e/2(J) and I' = Be/2(J' ), we see that I and I' are disjoint
compact intervals with In C I and I~ c I' for all n. That is, (4.5.1) holds.

(2) => (3). Let Xo E ker P, I and I' be disjoint compact intervals in R,
and let {x n } and {x~} be disjoint sequences with Xn -+ Xo and x~ -+ Xo such
that

and
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for all n. By translating x o, X n , and x~ by an appropriate multiple of YI> we
may assume that

sup 1< -<5 < <5 < inf l'

for some <5 > O. Further, by scaling these same vectors by <5 -I, we may also
assume that

sup 1< -1 < 1 < inf 1'. (4.5.4)

Using the well-known upper semicontinuity of P, it follows that for each
£>0,

and

for n sufficiently large. Using (4.5.4) we deduce that P(xo)::J [-1, 1]YI or,
from the equivalence of (4.1.2) and (4.1.3),

(4.5.5)

Now P(xn) = [an, f3n] YI for some an ~ f3n and [an, f3n] c I since
P(xn)cIYI' By (4.5.4), f3n< -1 so by Lemma 4.3(2), J(xn+ydc
{x*EX:lx*(yd<O}. Select any X;: Eext J(xn+ yd. Then x;:(yd<O. By
the weak* compactness of X:, there is a subnet of {xn (which we also
denote by {x;:}) that weak* converges to some xti EXr We will show that
xti E yt n J(xo)· First note that since x;:(yd < 0 for all n, xti(yd ~ o. If
xti(yd < 0, then there exists <5 < 0 such that x;:(yd ~ -<5 eventually. Hence

Ilxn+ YIII = x;:(Xn+ yd ~ x;:(xn) - <5

:::; Ilxnll- <5.

Passing to the limit yields

Ilxo+ YIII ~ Ilxoll- <5 < Ilxoll.

eventually

But this contradicts (4.5.5). Thus we must have xti(yd=O or xtiE yt.
Also,

xti(xo) = (xti - x;: )(xo) + x;:(xo - xn) + x;:(xn+ YI) - X;:(YI)

= (xti - x;:)(xo) + x;:(xo- xn) + Ilxn+ YIII- x;:(yd

--+0+0+ Ilxo+ YIII +0= Ilxoll·

That is, xt E J(xo). This proves that xt E yt n J(xo) and (xn, x;:)--+
(xo,xti). Thus A(xo, +1)#0·
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A similar proof (using P(x~) instead of P(xn)) shows that
A(xo, -1)#0. Thus (3) is verified.

(3) => (1). Assume that there exists XoE X with Ilxoll = Ilxo - ydl =
Ilxo+ YIII such that A(xo+ 1) # 0 and A(xo, -1) # 0. Let xij" E A(xo, + 1).
Then Xij"EytIlJ(Xo) and there exists a net (Xn,X:)EXXX* such that
Xn -+ Xo, x: -+ X6 weak*, x: E ext J(xn+ yd, and x:(yd < 0 for all n. Then
by Corollary 4.4(2), we have that f3n ~ -1, where P(xn) := [Cln, f3n] YI'

Similarly, using the fact that A(xo, -1) # 0, we deduce from 4.4(1)
that there exists a sequence {x~} converging to Xo and 1~ Cl~, where
P(x~) := [Cl~, f3~] YI' Clearly, P is not 2-1.s.c. at Xo' Hence P cannot have a
continuous selection by Theorem 4.1. I

5. ONE-DIMENSIONAL SUBSPACES IN CO(T)

Let T be a locally compact Hausdorff space and let Co(T) be the linear
space of all continuous real functions x on T which "vanish at infinity," i.e.,
the set {t E Tllx(t)1 ~ e} is compact for each e> O. Endowed with the
supremum norm Ilxll =sup{lx(t)11 tE T}, Co(T) is a Banach space. When T
is compact, Co(T) reduces to the Banach space of all continuous real
functions on T, and is usually denoted by C( T).

The boundary (resp. cardinality) of a subset Z of T is denoted by bd Z
(resp. card Z). The zero set of an element x E Co(T) is the set
Z(x) := x-1(O). We shall say that x does not change sign at t if there is a
neighborhood U of t such that either x ~ 0 on U or x ~ 0 on U.

By the well-known Arens-Kelley theorem [1] (stated for T compact but
also valid when T is locally compact; see [3, Lemma 3.3] for this and other
generalizations ),

ext Co(T)t = {ae, Ia = ±1, t E T},

where e, is defined on Co(T) by

Moreover, ext Co(T)t is weak* closed if T is compact, and when T is not
compact, the weak* closure of ext Co(T)t is the union of ext Co(T)t and O.

The main result of this section is the following intrinsic characterization
of those one-dimensional subspaces in Co(T) whose metric projections
admit continuous selections. In the particular case when T is compact, it
had been established by Lazar, Morris, and Wulbert [10] by a rather
lengthy ad hoc argument. Our proof is based on Theorem 4.5 and is
relatively short and direct.
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5.1. THEOREM. Let y,ECo(T)\{O}. The following statements are
equivalent.

(1) p[YI] has a continuous selection;

(2) (i)card[bdZ(yd]~1 and, (ii) for each tEbdZ(y,), y, does not
change sign at t.

Proof We may assume Ily,11 < 1.

(1)~(2). Supose (2) fails. Then either card[bdZ(Yd]>1 or
bdZ(yd= {to} and y, changes sign at to'

Case 1. card[bd Z(yd] > 1.
Choose distinct points to and t~ in bd Z(yd. There are four possible

locations for these points: either (i) to, t~E Y. '((0, (0)), (ii) toE Y1'((0, (0))
and t~ EYJ'(( - 00,0)), (iii) to, t~ E y, 1(( - 00,0)), or (iv) to E
Y1'(( -00,0)) and t~E Y1'((0, (0)). By replacing y, with -y" (iii) is
subsumed in (i) and (iv) is subsumed in (ii). Thus we need only consider
the possibilities (i) and (ii).

Case 1(i). to,t~E{tETly,(t»O}.

Choose disjoint neighborhoods Vo to to and V~ of t~. Using Urysohn's
lemma, it is possible to choose an Xo ECo(T) such that 0 ~ Xo ~
(-1 + yd /\ (-1 - yd on V o, 0 ~ Xo~ (1 + yd /\ (1 - yd on V~, Xo= 0 off
Vou V~, xo(to) = -1, and xo(t~) = 1. Then Ilxoll = 1. Also, for t E V o,

-1 ~ y,(t) ~ y,(t) - xo(t) ~ y,(t) - [( -1 + y,(t)) v (-1- Yl(t))]

= Yl(t) + (1- YI(t)) /\ (1 + Yl(t))

=1/\ (1+2y,(t))~1.

For tE V~,

For t¢ Vou V~,

Ixo(t) - Yl(t)1 = ly,(t)1 ~ 1.

Finally, since Ixo(to) - y,(to)1 = Ixo(to)1 = 1, it follows that Ilxo - Y"I = 1.
Similarly, Ilxo+ y,11 = 1. Thus Ilxoll = Ilxo- y,11 = Ilxo+ Ylll·

Let dIJ be the collection of all neighborhoods V of to, ordered by
inclusion. Then n{V IV EdIJ} = {to} and, for each V EdIJ, we can choose a
point tvEV such that y,(tv) >0. Then the net {tv} converges to to. By
Urysohn's lemma, for each V EdIJ, there exists a function g v E Co(T) such
that 0~gu~1, gv=O off V, and gv(tv) = 1. Then the function X v :=
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gv( -1- xo- yd+xo is in Co(T), xv~xo since -1- (xo+ yd~O, and
Xv = Xo off U. Given any e > 0, choose a neighborhood V. of to such that
xo(t) < -1 +e/2 and YI(t)<e/2 for tE V•. Thus for every VE!J/i with
V c V., and for all t E V, we see that

IxuCt) - xo(t)1 ~ YI(t) + xo(t) + 1 < e.

Hence IIx v -xoll <e so the net {xu} converges to Xo' Further, for every
tE T,

Ixu(t) + YI(t)1 = Ig u(t)( -1) + [1 - g v(t)] {xo(t) + YI(t)} I
~ guCt) + [1- gu(t)] IIxo+ YIII = 1

since Ilxo+ YIII = 1. Since

xv(tu)+ YI(t U)= -guCtu ) = -1,

it follows that Ilxu+ YIII = 1 and

- [xv(tu) + YI(tU)] = Ilx v + yill·

Setting x~= -etu' we see that x~EextJ(xu+YI), X~(YI)<O, and {x~}

converges weak * to xti' := -eto E J(xo) n yt. This proves that A(xo, 1) =I- 0.
Similarly, there exist a net t'u -t to with Yl(t'u) > 0 for all V and functions

X'uECo(t) with x'u-txo such that

x'uCt'v)- YI(t'u) = IIx'u- YIII·

Then the functions x t' := etv are in ext J(x'u ~ Yd, x t' ( - Yd < 0, and
{xt'} converges weak* to xti":= eto E J(xo) n yt. This proves that
A(xo, -1) #- 0.

Case l(ii). toE {tE TI YI(t»O} and toE {tE TI Yl(t)<O}.
Choose neighborhoods V o of to and Vo of to. By Urysohn's lemma, there

exists xoECo(T) so that O;::,xo;::'(-I+ydv(-I-yd, xo=O off
Vou V~, and xo(to) = xo(t~) = -1. Then Ilxoll = 1. Furthermore, just as in
Case 1(i), it is easy to verify that II XoII = II Xo - Yill = II Xo +Y til.

Let !J/i denote the collection of all neighborhoods V of to ordered by
inclusion. For each VE!J/i, choose any tuE V such that YI(tU»O. Again,
just as in the proof of Case 1(i), we obtain a net {x u} in Co(T) converging
to Xo and elements x~= -etuEextJ(xu+YI) with X~(Yl)<O and {x~}

weak* converges to some x6'= -etoEJ(xo)nYt. Thus A(xo, 1)=1-0.
Next let rlIJ' denote the collection of all neighborhoods V' of to ordered

by inclusion. For each V' E 0/i, we can choose tU' E V' such that Y 1(t u') < O.
By Urysohn's lemma, choose gu,E Co(T) such that O~ gu' ~ 1, gu,(t u')= 1,
and g U' = 0 off V'. Then, arguing just as in Case 1, the function x v' =
gu.[-I-xo+Yl]+xo is in Co(T), XU'~Xo, and xu,(tU')-YI(tU')=

640/53/3-4
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-llxu' - YIII· Thus the functions x~,,:= -etu' are in ext J(x u' - YI)
and weak * converge to xt:= -eto EJ(xo)n yt. This proves that
A(xo, -1)#0.

Case 2. bdZ(YI={to} and YI changes sign at to, i.e., toE
{tE TI YI(t»O} n {tE TI YI(t)<O}.

Let Uo be a neighborhood of to and set Uo= Uo. Then by the exact same
proof as in Case 1(ii), we obtain xoECo(T) with Ilxoll=llxo-Y,II=
Ilxo+ YIII, A(xo, 1) # 0, and A(xo, 1) # 0·

In every case we have obtained an XoE Co(T) with Ilxoll = Ilxo- YIII =
Ilxo + YIII, A(xo, + 1) # 0, and A(xo, -1) # 0. By Theorem 4.5, p[YI] does
not have a continuous selection. That is, (1) fails.

(2) ~ (1). Suppose (1) fails. Then by Theorem 4,5, there exists
xoECo(T) with Ilxoll = Ilxo- YIII = Ilxo+ YIII such that A(xo, +1)#0 and
A(xo, -1)#0, Since A(xo, +1)#0, there exist Xo*EJ(xo)nyt and a
net (xn, O"netJ in Co(T) x Co(T)* with Xn-+Xo, O"n= ±1, O"net.EJ(xn+ yd,
O"net.-+xt weak*, and O"net.(yd<O for all n. Since xt#o, it must be an
extreme point so x6'=O"oeto for some 0"0= ±1, toET. Since O"net. weak*
converges to O"oe to ' we must have O"n -+ 0"0 and tn -+ to' By passing to
a subnet, we may assume that O"n=O"O for all n. Since X[Eyt and
O"OYI(tn) <0 for all n, it follows that toEbdZ(YI)' Since xtEJ(Xo), we
have O"oxo(to) = Ilxoll so 0"0 = sgn xo(to),

Similarly, since A(xo, -1) # 0, there exist xt' EJ(xo)n yt and a net
(x~, O"ne,.) in Co(T) x Co(T)* with x~ -+ X o, O"n = ±l, (Jne,. -+ xt' weak*,
O"net'EJ{x~-Yd, and O"net,(-yd<O for all no Arguing·as above, we
ded~ce that xt'=O"oe to ' O"o'=sgnxo(to), toEbdZ(yd, O"OYI(t~»O even
tually, and t~-+to. If to#to, then condition (2)(i) is violated. If to=to,
then 0"0=0"0 and YI(tn)YI(t~)<O so YI changes sign at to. Thus condition
(2)(ii) is violated. This proves that (2) fails. I

It would be of interest to know whether an analogous result holds for
any finite-dimensional subspace in Co(T). * In the special case when
T = [a, b], this has been accomplished as the culmination of a long series
of papers by Niirnberger and Sommer (see their survey paper [12] and the
references cited there),

When T is any set with the discrete topology, the boundary of any subset
of T is empty and condition (2) of Theorem 5.1 is vacuously satisfied. In
particular, if T is the set of natural numbers with the discrete topology,
then Co(T) =: Co and we obtain the following corollary.

5.2. COROLLARY. The metric projection onto everyone-dimensional
subspace in Co has a continuous selection.

.. Wu Li has recently produced such a result in the case when T is locally connected.
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Actually, as a consequence of a result of Blatter [2], Co has the property
(P) of Brown [4]. Thus the metric projection onto any finite-dimensional
subspace of Co is l.s.c. and hence has a continuous selection.

6. ONE-DIMENSIONAL SUBSPACE IN L I

Let (T, g, p,) be a measure space and let L I = LI(T, g, p,) denote the
Banach space of all integrable functions x on T with the norm

Ilxll =t Ixl dp,.

The support of a function x ELI is the set supp x := {t E TI x(t) # O} and
the zero set of x is

Z(x) := T\supp x = {t E TI x(t) = O}.

(Here, and in the sequel, all sets in T are only defined up to a set of
p,-measure zero.) We shall assume that Lf=L"". This will be the case, for
example, if (T, g, p,) is a-finite.

A set AEg is called an atom if p,(A»O and either p,(B)=O or
p,(B) = p,(A) whenever BEg and B c. A.

The following lemma collects some facts about atoms that will be needed
in this section.

6.1. LEMMA. (1) For each x ELI, supp(x) is "a-finite," i.e., is a countable
union of sets having finite measure.

(2) There are at most a countable number of atoms in a a-finite set,
and each such atom has finite measure.

(3) A measurable function x is constant a.e. (p,) on an atom A of finite
measure; this value will be denoted by x(A).

(4) If E E g has the property that 0 < p,(E) ~ 00 and E contains no
atoms, then for each sequence of positive numbers {en} there exists a
sequence of pairwise disjoint sets {En} in E with 0 < p,(En)< en for every n.

These facts seem fairly well known with the possible exception of (4).
However, (4) can be proved using the same idea as in the proof of Sak's
lemma [6, pp. 308-309].

6.2. DEFINITIONS. A set E E g will be called unifat if it is the union of a
finite number of atoms. An element YI ELI is said to satisfy the Lazar con
dition if whenever A and B are disjoint sets in g with A u B = supp( Yd
and JA IY II dp, = In IY II dp" then one of the sets A or B must be unifat.
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The main result of this section is the following intrinsic characterization
of those one-dimensional subspaces in L 1 whose metric projections admit
continuous selections.

6.3. THEOREM. Let Yl EL 1\{O}. Then P[YI] has a continuous selection if
and only if Y I satisfies the Lazar condition.

Before giving the proof, we observe a few immediate corollaries of this
theorem.

6.4. COROLLARY. If supp(yd contains no atoms, then p[Y1] does not
have a continuous selection.

Related to this corollary, Lazar, Morris, and Wulbert [10] proved that
if T contained no atoms, then the metric projection onto any finite-dimen
sional subspace in L 1(T, f/, Jl) does not have a continuous selection.

6.5. COROLLARY. Ifsupp(yd is afinite union of atoms, then P[YI] has a
continuous selection. In particular, if L 1 is finite dimensional, the metric
projection onto anyone-dimensional subspace has a continuous selection.

The next corollary is due to Lazar and provided the motivation for the
name "Lazar condition." It follows immediately from Theorem 6.3 taking
T= N ="the natural numbers," f/ all subsets of N, and Jl counting
measure on f/, i.e., Jl(E) = card(E). Then L 1(T, f/, Jl) = 11 and Theorem 6.3
reduces to

6.6. COROLLARY (Lazar [9]). Let Yl E/1\{O}. Then P[Yd has a con
tinuous selection if and only if whenever A and B are disjoint sets of integers
with

A u B = {i EN IY 1(i) #- O}
and

L IYI(i)1 = L IY1(i)I,
ieA ieB

then either A or B must be finite.

The remainder of this section is devoted to a proof of Theorem 6.3.

6.7. LEMMA. Let T 1 be a a-finite subset of T. If T 1 is not unifat, then
there exists a sequence {En} of pairwise disjoint subsets of T 1 with
0< Jl(En ) < 00 such that, for any x E L 1 ,

lim f Ixl dJl = O.
n_ 00 En

(6.7.1)
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Proof Since T I is not unifat, either T I is the union of a countable
infinity of atoms, or tt(T I \A) > 0, where A is the union of all atoms in T I •

In the latter case, we set E = TI \A and apply Lemma 6.1 (4). This yields a
sequence {En} of pairwise disjoint subsets of T with limn_ 00 tt(En)= O. For
any xeL I , the condition (6.7.1) is a well-known consequence of the
monotone convergence theorem.

In the former case, we have

where {An} is a sequence of pairwise disjoint atoms. Now for each x EL I ,

f Ix(An)1 tt(An)= f '" Ixl dtt ~ f Ixl dtt = Ilxll < 00
I U, An T

Setting En = An for all n, the result follows. I

It is well known that ext(L oc,) consists of all those measurable functions f
on T such that IfI= 1 a.e. (tt). Also, for each x* ELt, there is a unique
f EL 00 such that

x*(x) =f xfdtt,
T

and Ilx*11 = ess supp If I· We shall call f the representer of x*.

6.8. LEMMA. Let YI ELI\{O} and let xoEL I satisfy

(6.8.1 )

Let x~ E yt Il J(xo), suppose fo E L oo is the representer of x~, and define

T+ := {t Esupp YII foUl = sgn YIU)}

T- := {tEsupp Yllfo(t)= -sgn YIU)},

Then:

(1) supp fo:::J supp Xo:::J supp YI and supp YI = T+ U T-.

(2) T+ csupp(xo+ YI)' T- csupp(xo- yd.
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(3) If T+ is unifat, then xt f/: A(xo, 1); if T- is unifat, then
xtf/:A(xo, -1).

Proof (1) By (6.8.1), it follows that XtEJ(Xo- ydnJ(xo+ yd. Thus

f xolo dJ1. = Ilxoll
T

implies that

and f (xo± yd/o dJ1. = Ilxo± YIII
T

sign xo(t)

lo(t) = sgn[xo(t) +YI(t)]

sgn[xo(t) - YI(t)]

a.e. on supp Xo

a.e. on supp(xo + yd

a.e. on supp(xo- yd.

(6.8.2)

Hence if t Esupp YI \supp x o, we have that

lo(t) = sgn YI(t) = -sgn YI(t),

which is impossible. Hence

J1.(supp YI \supp xo) = 0,

or supp YI C supp xo. Also, since lo(t) = sgn xo(t) on supp xo, it follows
that supp Xo C supp 10' Finally, if t Esupp YI, then lo(t) = ±1 so
supp YI = T+ U T-.

(2) If tET+, then tESUPPYI and 10(t)=sgnYI(t). But SUPPYlc
supp Xo and lo(t) = sgn xo(t). Thus YI(t) xo(t) > 0 and t Esupp(xo + yd.
That is, T+ csupp(xo+ YI)' Similarly, T- csupp(xo- yd.

(3) Assume T+ is unifat. Then T+ = U1 Ai' where the A j are pairwise
disjoint atoms and 0 < J1.(A;) < 00. To show that x~ ¢ A(xo, 1), it suffices to
show that if {(xn, x:)} is any net in L 1 x Lt with Xn --+ Xo, x: --+ xt weak·,
and x:EJ(xn+yd, then x:(yd~O eventually. Let {(xn,x:)} be such a
net and let InELoo be the representer of x:. Since T+ csupp(xo+ YI)
by (2), it follows that xo(A j ) + YI(A j ) i= 0 for i = 1,2, ..., k. Since
Xn+YI--+XO+YI> it follows that xn(AJ+YI(AJ--+xo(Ai)+YI(AJ so
xn(A j ) + YI(A j ) i= 0 eventually (for i = 1, 2, ..., k). Since x: EJ(xn+ yd,

fn(AJ = sgn[xn(AJ + YI(A i)]

= sign [xo(A;) + YI(A j )]

= 10(A;)

eventually

by (6.8.2).
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That is, fn = fo eventually on T+. Hence, for n eventually,

=f foy,dJl=xJ'(yd=O.
T+u T-
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Thus xJ' ¢ A(xo, 1).
Similarly, if T- is unifat, then xti ¢ A(xo, -1). I
Now we are in position to prove Theorem 6.3.

Proof of Theorem 6.3. Suppose YI fails the Lazar condition. We will
show that there exists xoEL I with Ilxoll = Ilxo- y,11 = Ilxo+ y,11 such that
A(xo, 1) #- 0 and A(xo, -1) #- 0. The assumption on YI implies that there
exist disjoint sets A and B such that A u B =supp YI' JA IY II dJl =
h IYll dJl, and neither A nor B is unifat. By Lemma 6.7, there exist
sequences {En} and {Fn} of pairwise disjoint sets such that En C A, FnC B,
0< Jl(En)< 00, 0 < Jl(Fn)< 00, and, for each x E L\l

lim f Ixl dJl = 0 = lim f Ixl dJl.
n -- 00 En n -- 00 Fn

Define functions 10 and X o on T by

(6.3.1 )

sgn YI(t)

lo(t) = -sgn Yl (t)

1

and

for tEA

for tE B

otherwise

IY,(t) for tEA

xo(t)= O-YI(t) for tEB
otherwise.

Then fo E L oo ' ess sup Ifol = 1, and Xo ELI' A simple computation shows
that
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and, letting io be the representer of the functional xt E Lr, we see that
xt E yt n J(xo) and xt E ext(Lnl'

Next define functions in in L oo by

and functions X n in L, by

Let in be the representer of x: E Lr Then x: E ext(Ldl and a
straightforward computation verifies that

That is, x: E ext J(xn + yd. Next observe that

by (6.3.1). Further, for any x E L"

-+ xt(x) by (6.3.1).

That is, x: -+ xt weak*. Finally,

= -2 f IYd dJl<O.
En

This proves that xt E A(xo, 1).
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Similarly, defining I~ and x~ on T by

293

j,' = {fo on T\Fn

n -fo on Fn

,_{xo on T\Fn

x n
- 2YI Fon n

and letting f~ be the representers for the functionals x:', we can prove that
(x~, x:') -+ (xo, x3'), x:' E ext J(x~ - yd, and x:'( - yd < 0 for all n. Thus
x3'EA(xo, -1). By Theorem 4.5, it follows that P[YI] does not have a
continuous selection.

Conversely, suppose P[YI] fails to have a continuous selection. Then by
Theorem 4.5 there exists X o E L I with

Ilxoll = Ilxo- YIII = Ilxo+ YIII

such that A(xo, +1) # 0 and A(xo, -1) # 0. For each a E { +1, -l}, let
x: E A(xo, a) and let I" E Lao be the representer of x:. Define

TI(a) := {t E supp YllfAt) = sgn YI(t)}

T2(a) := {t E supp YII I,,(t) = -sgn YI(t)}.

Since x: E yt n J(xo), Lemma 6.8 implies that

supp f" ::) supp Xo ::) supp YI'

and

Further, x: E yt implies that

If YI has the Lazar condition, then for each aE {+1, -I} either TI(a)
or T2(a) is unifat. If a=l, then since x[EA(xo, +1), it follows by
Lemma 6.8(3) that T I (I) is not unifat. Hence T2(1) is unifat. Similarly,
since X!IEA(xo, -1), T2(-I) is not unifat and TI(-I) is unifat. Since
x: E J(xo) for a = ±1, it follows that

for all t E suppXo ::) supp YI' Thus TI(1) n Ti -1) = 0 and
TI(-I)nT2(1)=0. But this implies by (6.3.2) that T2(-I)cT2(1) and
T2(I)c T2 ( -1). That is, T2( -1)= T2(1). But T 2(1) is unifat and T2( -1) is
not unifat. This contradiction shows that YI fails to have the Lazar
condition, and completes the proof. I

It would be interesting to know whether there is an analogue of
Theorem 6.3 for subspaces of L I of any finite dimension greater than one.
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